【題目】已知拋物線上一點,與關于拋物線的對稱軸對稱,斜率為1的直線交拋物線于、兩點,且、在直線兩側.
(1)求證:平分;
(2)點為拋物線在、處切線的交點,若,求直線的方程.
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點,x軸的非負半軸為極軸建立極坐標系,并在兩種坐標系中取相同的長度單位已知直線l的參數(shù)方程為(為參數(shù),),拋物線C的普通方程為.
(1)求拋物線C的準線的極坐標方程;
(2)設直線l與拋物線C相交于A,B兩點,求的最小值及此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐中,OA、OB、OC所在直線兩兩垂直,且,CA與平面AOB所成角為,D是AB中點,三棱錐的體積是.
(1)求三棱錐的高;
(2)在線段CA上取一點E,當E在什么位置時,異面直線BE與OD所成的角為?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在正項數(shù)列中,首項,點在雙曲線上,數(shù)列中,點在直線上,其中是數(shù)列的前項和.
(1)求數(shù)列、的通項公式;
(2)若,求證: 數(shù)列為遞減數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若定義在R上的函數(shù)滿足:對于任意實數(shù)x、y,總有恒成立,我們稱為“類余弦型”函數(shù).
已知為“類余弦型”函數(shù),且,求和的值;
在的條件下,定義數(shù)列2,3,求的值.
若為“類余弦型”函數(shù),且對于任意非零實數(shù)t,總有,證明:函數(shù)為偶函數(shù),設有理數(shù),滿足,判斷和的大小關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與拋物線:交于,兩點,且的面積為16(為坐標原點).
(1)求的方程.
(2)直線經過的焦點且不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com