已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(一3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MN的
垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。
(1) ;(2)
【解析】
試題分析:(1)因?yàn)橹行脑谠c(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(一3,0),一條漸近線的方程是,兩個(gè)條件即可求出雙曲線的方程.
(2)依題意可得通過(guò)假設(shè)直線的方程,聯(lián)立雙曲線方程消去y,即可得到一個(gè)關(guān)于x的二次方程,運(yùn)用韋達(dá)定理以及判別式要大于零,即可寫出線段MN的中垂線的直線方程,從而求出直線與兩坐標(biāo)軸的交點(diǎn),即可表示出所求的三角形的面積,從而得到一個(gè)等式結(jié)合判別式的關(guān)系式,即可得到結(jié)論.
試題解析:(1)設(shè)雙曲線的方程為,
由題設(shè)得 解得,所以雙曲線的方程為;
(2)設(shè)直線的方程為,點(diǎn),的坐標(biāo)滿足方程組,將①式代入②式,得,
整理得,此方程有兩個(gè)不等實(shí)根,于是,
且,
整理得.③ 由根與系數(shù)的關(guān)系可知線段的中點(diǎn)坐標(biāo)滿足:
,,從而線段的垂直平分線的方程為,此直線與軸,軸的交點(diǎn)坐標(biāo)分別為,,
由題設(shè)可得,整理得,,
將上式代入③式得,整理得,,解得或, 所以的取值范圍是.
考點(diǎn):1.待定系數(shù)的應(yīng)用.2.直線與圓錐曲線的位置關(guān)系.3.三角形的面積的表示方法.4.韋達(dá)定理.5.代數(shù)的運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過(guò)雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).
(1)求雙曲線C的方程;
(2)若A、B分別是雙曲C上兩條漸近線上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說(shuō)明該軌跡是什么曲線。
(3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足,當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com