6.如圖,若一個(gè)空間幾何體的三視圖,正視圖和俯視圖都是直角三角形,其直角邊均為1,俯視圖是邊長為1的正方形,則該幾何體的表面積為(  )
A.1+$\sqrt{2}$B.2+2$\sqrt{2}$C.$\frac{1}{3}$D.2+$\sqrt{2}$

分析 幾何體是一個(gè)四棱錐,四棱錐的一條側(cè)棱與底面垂直,底面是邊長為1的正方形,即可求出該幾何體的表面積.

解答 解:由三視圖知,幾何體是一個(gè)四棱錐,
四棱錐的一條側(cè)棱與底面垂直,底面是邊長為1的正方形,高為1,
∴該幾何體的表面積為2×$\frac{1}{2}×1×1$+2×$\frac{1}{2}×\sqrt{2}×1$+1×1=2+$\sqrt{2}$.
故選:D.

點(diǎn)評 本題考查由三視圖求該幾何體的表面積,考查由三視圖還原幾何體的直觀圖,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個(gè)空間幾何體的三視圖如圖所示,且這個(gè)空間幾何體的所有頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球的體積是$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.證明不等式:2a+2b-4<ab,其中的a,b∈(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某幾何體的三視圖如圖所示,其中側(cè)視圖的下半部分曲線為半圓弧,則該幾何體的表面積為$5π+16+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,側(cè)棱PA⊥底面ABCD,且PA=AB=BC=2,AD=1.
(Ⅰ)試作出平面PAB與平面PCD的交線EP(不需要說明畫法和理由);
(Ⅱ)求證:直線EP⊥平面PBC;
(Ⅲ)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,矩形ABCD中,$\frac{AB}{AD}$=λ(λ>1),將其沿AC翻折,使點(diǎn)D到達(dá)點(diǎn)E的位置,且二面角C-AB-E為直二面角.
(1)求證:平面ACE⊥平面BCE;
(2)設(shè)F是BE的中點(diǎn),二面角E-AC-F的平面角的大小為θ,當(dāng)λ∈[2,3]時(shí),求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,(x>0)\\{2^{-x}},(x≤0)\end{array}$,則不等式f(x)>1的解集為( 。
A.(2,+∞)B.(-∞,0)C.(-∞,0)∪(2,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(t)=$\sqrt{\frac{1+t}{1-t}}$,g(x)=cosx•f(sinx)-sinx•f(cosx),x∈(π,$\frac{7π}{12}$).
(1)求函數(shù)g(x)的值域;
(2)若函數(shù)y=|cos(ωx+$\frac{π}{6}$)|•f(sin(ωx+$\frac{π}{6}$))(ω>0)在區(qū)間[$\frac{π}{3}$,π]上為增函數(shù),求實(shí)數(shù)ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法正確的是(m,a,b∈R)( 。
A.am>bm,則a>bB.a>b,則am>bmC.am2>bm2,則a>bD.a>b,則am2>bm2

查看答案和解析>>

同步練習(xí)冊答案