【題目】已知橢圓:的離心率為,橢圓的四個頂點構(gòu)成的四邊形面積為.
(1)求橢圓的方程;
(2)若是橢圓上的一點,過且斜率等于的直線與橢圓交于另一點,點關(guān)于原點的對稱點為.求面積的最大值及取最大值時直線的方程.
【答案】(1);(2)取得最大值.此時直線的方程為
【解析】
(1)利用已知條件求出,,即可得到橢圓方程.
(2)設(shè),,則,直線的斜率,利用點差法可得與的關(guān)系,求出,設(shè)方程為,聯(lián)立直線與橢圓方程,列出韋達(dá)定理,表示出三角形的面積,即可計算面積最值.
解:(1)根據(jù)題意,橢圓:的離心率為,則有,
以橢圓長、短軸四個端點為頂點的四邊形的面積為,則有,
又,解得,.
故橢圓的方程為.
(2)設(shè),,
則,直線的斜率,
由,兩式相減,,
由直線,所以.
連結(jié),因為,關(guān)于原點對稱,所以,設(shè)方程為,
由,
整理得:,,得.
,,
.
所以當(dāng)時,取得最大值.此時直線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m是實數(shù),關(guān)于x的方程E:x2﹣mx+(2m+1)=0.
(1)若m=2,求方程E在復(fù)數(shù)范圍內(nèi)的解;
(2)若方程E有兩個虛數(shù)根x1,x2,且滿足|x1﹣x2|=2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對任意,都有.
討論的單調(diào)性;
當(dāng)存在三個不同的零點時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1)求函數(shù)在上的值域
(2)設(shè),若方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面定義一個同學(xué)數(shù)學(xué)成績優(yōu)秀的標(biāo)志為:“連續(xù)次考試成績均不低于分”.現(xiàn)有甲、乙、丙三位同學(xué)連續(xù)次數(shù)學(xué)考試成績的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲同學(xué):個數(shù)據(jù)的中位數(shù)為,眾數(shù)為;
②乙同學(xué):個數(shù)據(jù)的中位數(shù)為,總體均值為;
③丙同學(xué):個數(shù)據(jù)的中位數(shù)為,總體均值為,總體方差為;
則可以判定數(shù)學(xué)成績優(yōu)秀同學(xué)為()
A. 甲、丙B. 乙、丙C. 甲、乙D. 甲、乙、丙
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為實數(shù)常數(shù))
(1)當(dāng)時,求函數(shù)在上的單調(diào)區(qū)間;
(2)當(dāng)時,成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com