如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點,是上的點.
(1)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示);
(2)若,求線段的長.
(1),(2).
解析試題分析:(1)求異面直線所成角,關(guān)鍵在于利用平行,將所求角轉(zhuǎn)化為某一三角形中的內(nèi)角.因為條件有中點,所以從中位線上找平行. 取的中點,連,則,即即為異面直線與所成的角.分別求出三角形三邊,再利用余弦定理求角. ,,,,,(2)求線段長,可利用空間向量坐標(biāo)進行計算. 設(shè)的長為,,,由知可得,∴線段的長為
解:(1)取的中點,連,則,即即為異面直線與所成的角. (2分)
連.
在中,由,
知
在中,由,知 (4分)
在中,
∴ (6分)
(2)以為原點,建立如圖空間直角坐標(biāo)系,設(shè)的長為
則各點的坐標(biāo)為,,,, (2分)
∴,
由知 (4分)
即,解得
∴線段的長為 (6分)
考點:平移求線線角,利用空間向量求長度
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,正方形與矩形所在平面互相垂直,,點為的中點.
(1)求證:∥平面;(2)求證:;
(3)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中,平面,,為棱上的動點,.
⑴當(dāng)為的中點,求直線與平面所成角的正弦值;
⑵當(dāng)的值為多少時,二面角的大小是45.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的多面體中,底面BCFE是梯形,EF//BC,又EF平面AEB,AEEB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB//平面DEG;
(2)求證:BDEG;
(3)求二面角C—DF—E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以,為邊的平行四邊形的面積;
(2)若|a|=,且a分別與,垂直,求向量a的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com