若函數(shù)f(x)=log2(x2-2ax+3)在區(qū)間(-∞,1]內(nèi)單調(diào)遞減,則a的取值范圍是(  )
A、[1,+∞)
B、(1,+∞)
C、[1,2)
D、[1,2]
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法,結(jié)合復(fù)合函數(shù)單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:設(shè)t=g(t)=x2-2ax+3,則函數(shù)y=log2t為增函數(shù),
若函數(shù)f(x)=log2(x2-2ax+3)在區(qū)間(-∞,1]內(nèi)單調(diào)遞減,
則等價(jià)為g(t)=x2-2ax+3在區(qū)間(-∞,1]內(nèi)單調(diào)遞減且g(1)>0,
-
-2a
2
=a≥1
g(1)=1-2a+3>0
,
a≥1
a<2
,解得1≤a<2,
故a的取值范圍是[1,2),
故選:C
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)單調(diào)性的應(yīng)用,利用換元法結(jié)合復(fù)合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),設(shè)a=f(-25),b=f(11),c=f(80),則a,b,c的大小關(guān)系是(  )
A、c<b<a
B、b<a<c
C、b<c<a
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列4個(gè)命題:
①“如果x+y=0,則x、y互為相反數(shù)”的逆命題;
②“函數(shù)f(x)=tan(x+φ)為奇函數(shù)”的充要條件是“φ=kπ(k∈Z)”;
③在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要條件;
④“如果x2+x-6≥0,則x>2”的否命題,
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量
a
=(-4,4),
b
=(2,x),
c
=(2,y),已知
a
b
,
a
c
,
(1)求(2
a
+
b
)•
c
的值;
(2)求 
b
+
a
c
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x3+2x-a
,若曲線y=-x2+2x上存在點(diǎn)(x0,y0)使得f(f(y0))=y0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
lim
x→-∞
(x4+x5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,
m
=(sin(x-A),sinA),
n
=(2cosx,1)(x∈R),函數(shù)f(x)=
m
n
在x=
12
處取得最大值.
(1)當(dāng)x∈(0,
π
2
)時(shí),求函數(shù)f(x)的值域;
(2)若a=7且sinB+sinC=
13
3
14
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,“A=
π
3
”是“cosA=
1
2
”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,已知E、F分別是AB、BC的中點(diǎn),求證:EF∥A1C1

查看答案和解析>>

同步練習(xí)冊(cè)答案