【題目】正方體 中, 的中點為 , 的中點為 ,則異面直線 與 所成的角是( )
A.
B.
C.
D.
【答案】D
【解析】
取AA1中點P,連接BP,則BP∥CN,由Rt△ABP≌Rt△BB1M
可得∠DMB=∠APB,∴∠DMB+∠DBM=∠APB+∠DBM=90°,
∴∠BDM=90°,即B1M⊥BP,∴B1M⊥CN.∴異面直線B1M與CN所成角的度數(shù)為90°. 所以答案是:D.
【考點精析】本題主要考查了異面直線及其所成的角的相關(guān)知識點,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論不正確的是(填序號).
①各個面都是三角形的幾何體是三棱錐;
②以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;
③棱錐的側(cè)棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;
④圓錐的頂點與底面圓周上的任意一點的連線都是母線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中點,N是BC的中點,點P在線段A1B1上運動.
(Ⅰ)求證:PN⊥AM;
(Ⅱ)試確定點P的位置,使直線PN和平面ABC所成的角最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】里約熱內(nèi)盧奧運會正在如火如荼的進(jìn)行,奧運會紀(jì)念品銷售火爆,已知某種紀(jì)念品的單價是5元,買x(x∈{1,2,3,4,5})件該紀(jì)念品需要y元.試用函數(shù)的三種表示法表示函數(shù)y=f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,當(dāng)x∈(0,+∞)時,f(x)=log2x,若a=f(﹣3),b=f( ),c=f(2),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項的和為Sn , 且Sn+ an=1(n∈N*)
(1)求{an}的通項公式;
(2)設(shè)bn=﹣log3(1﹣Sn),設(shè)Cn= ,求數(shù)列{Cn}的前n項的和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l過點M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點為極點,以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點A、B,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)[x]表示不超過x的最大整數(shù),如:[π]=3,[﹣4.3]=﹣5.給出下列命題: ①對任意實數(shù)x,都有[x]﹣x≤0;
②若x1≤x2 , 則[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)= ﹣ ,則y=[f(x)]+[f(﹣x)]的值域為{﹣1,0}.
其中所有真命題的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com