【題目】已知函數(shù),其中.

)若,求函數(shù)的單調(diào)區(qū)間;

)設(shè).上恒成立,求實(shí)數(shù)的最大值.

【答案】)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(.

【解析】

)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;

)由題意可知上恒成立,分兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出上恒成立;在時(shí),經(jīng)過(guò)分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.

)函數(shù)的定義域?yàn)?/span>.

當(dāng)時(shí),.

,解得(舍去),.

當(dāng)時(shí),,所以,函數(shù)上單調(diào)遞減;

當(dāng)時(shí),,所以,函數(shù)上單調(diào)遞增.

因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;

)由題意,可知上恒成立.

i)若,,

,

構(gòu)造函數(shù),則

,.

,上恒成立.

所以,函數(shù)上單調(diào)遞增,

當(dāng)時(shí),上恒成立.

ii)若,構(gòu)造函數(shù),.

,所以,函數(shù)上單調(diào)遞增.

恒成立,即,,即.

由題意,知上恒成立.

上恒成立.

由()可知,

,當(dāng),即時(shí),函數(shù)上單調(diào)遞減,

,不合題意,,即.

此時(shí)

構(gòu)造函數(shù).

,

,,

恒成立,所以,函數(shù)上單調(diào)遞增,恒成立.

綜上,實(shí)數(shù)的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足時(shí),

1)當(dāng)時(shí),求數(shù)列的前項(xiàng)和;

2)當(dāng)時(shí),求證:對(duì)任意為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程是,在以極點(diǎn)為原點(diǎn)O,極軸為x軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系xOy中,曲線C2的參數(shù)方程為θ為參數(shù)).

1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程;

2)將曲線C2經(jīng)過(guò)伸縮變換后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動(dòng)點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是拋物線的焦點(diǎn),過(guò)點(diǎn)且與坐標(biāo)軸不垂直的直線交拋物線于兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),其中,.過(guò)點(diǎn)軸的垂線交拋物線于點(diǎn),直線交拋物線于點(diǎn).

1)求的值;

2)求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;

(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是邊長(zhǎng)為2的菱形,,都垂直于平面,且.

1)證明:平面;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有多年.龍眼干的級(jí)別按直徑的大小分為四個(gè)等級(jí),其中直徑在區(qū)間為特級(jí)品,在的為一級(jí)品,在的為二級(jí)品,在的為三級(jí)品,某商家為了解某農(nóng)場(chǎng)一批龍眼干的質(zhì)量情況,隨機(jī)抽取了個(gè)龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計(jì)得到這些龍眼干的直徑的頻數(shù)分布表如下:

頻數(shù)

1

29

7

用分層抽樣的方法從樣本的一級(jí)品和特級(jí)品中抽取個(gè),其中一級(jí)品有個(gè).

1)求、的值,并估計(jì)這些龍眼干中特級(jí)品的比例;

2)已知樣本中的個(gè)龍眼干約克,該農(nóng)場(chǎng)有千克龍眼干待出售,商家提出兩種收購(gòu)方案:

方案A:以/千克收購(gòu);

方案B:以級(jí)別分裝收購(gòu),每袋個(gè),特級(jí)品/袋、一級(jí)品/袋、二級(jí)品/袋、三級(jí)品/.用樣本的頻率分布估計(jì)總體分布,哪個(gè)方案農(nóng)場(chǎng)的收益更高?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為兩個(gè)平面,命題的充要條件是內(nèi)有無(wú)數(shù)條直線與平行;命題的充要條件是內(nèi)任意一條直線與平行,則下列說(shuō)法正確的是( )

A.”為真命題B.”為真命題

C.”為真命題D.”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從的路徑中,最短路徑的長(zhǎng)度為( )

A. B. C. D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案