函數(shù)f(x)=
4-x2
的值域是( 。
A、(0,2]
B、[0,2)
C、[0,2]
D、(-∞,2]
考點(diǎn):函數(shù)的值域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,利用觀察法求函數(shù)的值域.
解答: 解:∵0≤4-x2≤4,
∴0≤
4-x2
≤2,
即函數(shù)f(x)=
4-x2
的值域是[0,2].
故選C.
點(diǎn)評(píng):本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上是減函數(shù)的為( 。
A、y=
1
x
B、y=x2
C、y=
1
x2
D、y=(
1
2
)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinωx,cosωx),
b
=(cosωx,
3
cosωx),(ω>0),函數(shù)f(x)=
a
b
-
3
2
的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)如果△ABC的三邊a、b、c所對(duì)的角分別為A,B,C,且滿足b2+c2=a2-
3
bc,求f(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“?x>0,x+1>
x
”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角三角形ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2b•sinA=
3
a.
(1)求角B的大;
(2)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x
2-x
+lg(2x+1)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+1
+lg(x-1)的定義域?yàn)?div id="jn7tfrd" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中,錯(cuò)誤的是( 。
A、已知函數(shù)f(x)=
x
0
(ex+e-x)dx,則f(x)是奇函數(shù)
B、設(shè)回歸直線方程為
y
=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí)y平均減少2.5個(gè)單位
C、已知ξ服從正態(tài)分布 N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.1
D、對(duì)于命題p:“?x∈R,x2+x+1<0”,則?p:“?x∈R,x2+x+1>0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中A點(diǎn)坐標(biāo)為(
3
,1),B點(diǎn)是以原點(diǎn)O為圓心的單位圓上的動(dòng)點(diǎn),則|
OA
+
OB
|的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案