【題目】某種籠具由內(nèi),外兩層組成,無(wú)下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長(zhǎng)相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長(zhǎng)為,高為,圓錐的母線長(zhǎng)為.

1)求這種籠具的體積(結(jié)果精確到0.1);

2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)籠具,該材料的造價(jià)為每平方米8元,共需多少元?

【答案】1;(2

【解析】

1)根據(jù)籠具的構(gòu)造,可知其體積等于圓柱的體積減去圓錐的體積,即可求出;

2)求出籠具的表面積,即可求出50個(gè)籠具的總造價(jià).

設(shè)圓柱的底面半徑為,高為;圓錐的母線長(zhǎng)為,高為,

根據(jù)題意可知:

1,cm,cm

所以籠具的體積cm

2)圓柱的側(cè)面積cm,圓柱的底面積cm

圓錐的側(cè)面積cm,所以籠具的表面積為 cm,

故造50個(gè)籠具的總造價(jià):元.

答:這種籠具的體積約為 cm,生產(chǎn)50個(gè)籠具的總造價(jià)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) .

1)當(dāng)時(shí), 上恒成立,求實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),若函數(shù)上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面上,給定非零向量,對(duì)任意向量,定義.

(1)若,,求;

(2)若,證明:若位置向量的終點(diǎn)在直線上,則位置向量的終點(diǎn)也在一條直線上;

(3)已知存在單位向量,當(dāng)位置向量的終點(diǎn)在拋物線上時(shí),位置向量終點(diǎn)總在拋物線上,曲線關(guān)于直線對(duì)稱,問(wèn)直線與向量滿足什么關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于, 兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),直線相切,求的值;

(2)若函數(shù)內(nèi)有且只有一個(gè)零點(diǎn),求此時(shí)函數(shù)的單調(diào)區(qū)間;

(3)當(dāng)時(shí),若函數(shù)上的最大值和最小值的和為1,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長(zhǎng),最近個(gè)季度的銷售額數(shù)據(jù)統(tǒng)計(jì)如下表(其中表示年第一季度,以此類推):

季度

季度編號(hào)x

銷售額y(百萬(wàn)元)

1)公司市場(chǎng)部從中任選個(gè)季度的數(shù)據(jù)進(jìn)行對(duì)比分析,求這個(gè)季度的銷售額都超過(guò)千萬(wàn)元的概率;

2)求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司的銷售額.

附:線性回歸方程:其中,

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的左焦點(diǎn)為,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且APF1周長(zhǎng)的最小值為6,則雙曲線的離心率為( 。

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率,且過(guò)點(diǎn)

(1)求橢圓的方程;

(2)如圖,過(guò)橢圓的右焦點(diǎn)作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,該橢圓經(jīng)過(guò)點(diǎn),且離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)是圓上任意一點(diǎn),由引橢圓的兩條切線,,當(dāng)兩條切線的斜率都存在時(shí),證明:兩條切線斜率的積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案