7.已知f(3x)=2x•log23,則f(21007)的值等于2014.

分析 方法一:利用復(fù)合函數(shù)的定義域求解出x的值,代入計算即可.
方法二:利用換元法求出f(x)的解析式,再求f(21007)的值.

解答 解:法一:根據(jù)復(fù)合函數(shù)的定義域性質(zhì),
可得:3x=21007
解得:x=1007•log32;
那么f(3x)=f(21007)=2×1007•log32×log23=2014.
故答案為:2014.
法二:由題意:設(shè)3x=t,則x=log3t,
那么:f(t)=2log3t•log23
∴f(21007)=2log321007•log23=2×1007•log32×log23=2014.
故答案為:2014.

點評 本題考查了復(fù)合函數(shù)的解析式的求法和帶值計算能力.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)集合A={x|2x2-5x+2=0},B={x|x2=1}.
(1)寫出集合A的所有子集;
(2)若集合C={x|bx=1},且C⊆B,求實數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$sin(π-ωx)-sin($\frac{π}{2}$-ωx)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(A)=2,求$\frac{b-2c}{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知sinα+cosα=$\frac{1}{5}$.求:
(1)sinα-cosα;
(2)sin3α+cos3α.
(參考公式:a3+b3=(a-b)(a2-ab+b2))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.數(shù)列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,…,$\frac{1}{m+1}$,$\frac{2}{m+1}$,…,$\frac{m}{m+1}$,…的第20項是( 。
A.$\frac{5}{8}$B.$\frac{3}{4}$C.$\frac{5}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(a,c),$\overrightarrow{n}$=(1-2cosA,2cosC-1),$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)若b=5,求a+c值;
(Ⅱ)若$tan\frac{B}{2}=\frac{1}{2}$,且角A是△ABC中最大內(nèi)角,求角A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.(log916)•(log427)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)集合A=$\{sin\frac{π}{3},sin\frac{π}{6},cos\frac{π}{4}\},B=\{sin\frac{2π}{3},sin\frac{5π}{6},cos\frac{3π}{4}\}$,則A∪B的元素個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某企業(yè)共有3 200名職工,其中,中、青、老年職工的比例為5:3:2,從所有職工中抽取一個容量為400的樣本,采用哪種抽樣方法更合理?中、青、老年職工應(yīng)分別抽取多少人?

查看答案和解析>>

同步練習冊答案