已知函數(shù)份f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x-2)
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
考點:函數(shù)的最值及其幾何意義,函數(shù)解析式的求解及常用方法
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)把2x、x+2代入f(x)=2x中,即可求得g(x)的解析式,利用復(fù)合函數(shù)定義域的求法可得
0≤2x≤3
0≤x+2≤3
,解此不等式即可求得函數(shù)的定義域;
(2)令t=2x,則可將函數(shù) g(x)=(2x2-4•2x,轉(zhuǎn)化為一個二次函數(shù),然后根據(jù)二次函數(shù)在定區(qū)間上的最值問題,即可得到g(x)的最大值和最小值.
解答: 解:(1)g(x)=f(2x)-f(x+2)=22x-2x+2=(2x2-4•2x,
其定義域須滿足
0≤2x≤3
0≤x+2≤3
,解得0≤x≤1,
∴g(x)=(2x2-4•2x,
函數(shù)g(x)的定義域為[0,1];
(2)∵g(x)=(2x2-4•2x(0≤x≤1),
令t=2x
∵0≤x≤1,∴1≤t≤2,
∴有:h(t)=t2-4t=(t-2)2-4(1≤t≤2)
∴當 t∈[1,2]時,h(t)是減函數(shù),
∴f(x)min=h(2)=-4,f(x)max=h(1)=-3.
點評:本題只要考查代入法求函數(shù)的解析式和復(fù)合函數(shù)的定義域,以及利用換元法求函數(shù)的最值問題,體現(xiàn)了換元的數(shù)學(xué)方法和轉(zhuǎn)化的數(shù)學(xué)思想,特別注意新變量的取值范圍,同時也考查了二次函數(shù)在定區(qū)間上的最值問題,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sinA:sinB:sinC=k:k+1:2k(k>0),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系中,曲線C1的參數(shù)方程為
x=2+cosθ
y=1+sinθ
為參數(shù)),若以坐標原點o為極點、x軸正半軸為極軸建立極坐標系'則曲線C2:psin(θ+
π
3
)=0上的點到曲線C1,上的點的最短距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
2
)-4cos(π-x)sin(x-
π
6
).
(1)求f(0)的值;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中.a(chǎn)1=1,anan+1=(
1
2
n(n∈N*
(1)求證:數(shù)列{a2n}與{a2n-1}(n∈N*)都是等比數(shù)列
(2)若數(shù)列{an}的前2n項的和為T2n,令bn=(3-T2n)•n(n+1),求數(shù)列{bn}的最大項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b>0,a≠0,若函數(shù)f(x)=
ax2+bx
的定義域與值域相等,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖所示,根據(jù)圖中的數(shù)據(jù),計算該幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
3
,an+1=an+
a
2
n
n2
(n∈N*).證明:對一切n∈N*,有
(Ⅰ)
an+1-an
an+1an
1
n2

(Ⅱ)0<an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=(-1)n(an+1),記Sn為{an}前n項的和,則S2014=
 

查看答案和解析>>

同步練習(xí)冊答案