【題目】直線l過點M(2,1),且分別交x軸、y軸的正半軸于點A、B.點O是坐標原點.
(1)當△ABO的面積最小時,求直線l的方程;
(2)當最小時,求直線l的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一(1)班參加校生物競賽學(xué)生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽的人數(shù)及分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分數(shù)在[80,100]之間的學(xué)生中任選2人進行某項研究,求至少有1人分數(shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù).
(1)求證: 不是上的奇函數(shù);
(2)若是上的單調(diào)函數(shù),求實數(shù)的值;
(3)若函數(shù)在區(qū)間上恰有3個不同的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B,C,D是直角坐標系中不同的四點,若,,且,則下列說法正確的是( ),
A.C可能是線段AB的中點
B.D可能是線段AB的中點
C.C、D可能同時在線段AB上
D.C、D不可能同時在線段AB的延長線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是雙曲線上的動點,是雙曲線的焦點,M是的平分線上一點,且,某同學(xué)用以下方法研究:延長交于點N,可知為等腰三角形,且M為的中點,得,類似地:點是橢圓上的動點,橢圓的焦點,M是的平分線上一點,且則的取值范圍是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、,
(1)若兩點到直線的距離都為,求直線的方程;
(2)若兩點到直線的距離都為,試根據(jù)的取值討論直線存在的條數(shù),不需寫出直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,離心率為,是橢圓上的一個動點,且面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)直線斜率為,且與橢圓的另一個交點為,是否存在點,使得若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )
A. P1P2= B. P1=P2= C. P1+P2= D. P1<P2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,設(shè)直線,其中,給出下列結(jié)論:
①直線的方向向量與向量共線;
②若,則直線與直線的夾角為;
③直線與直線()一定平行;
寫出所有真命題的序號________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com