e1
e2
不共線,
a
=
e1
+
e2
,
b
=3
e1
-3
e2
,
a
b
是否共線?
考點(diǎn):平行向量與共線向量,平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:假設(shè)
a
b
共線,則3
e1
-3
e2
=λ(
e1
+
e2
)=λ
e1
e2
,故
3=λ
-3=λ
方程組無(wú)解可得結(jié)論.
解答: 解:假設(shè)
a
b
共線,則
b
a
,
即3
e1
-3
e2
=λ(
e1
+
e2
)=λ
e1
e2
,
3=λ
-3=λ
,故不存在實(shí)數(shù)λ滿足題意,
a
b
不共線
點(diǎn)評(píng):本題考查向量的平行與共線,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=20,an=54,Sn=999,則d=
 
; n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是△ABC的重心,記
BC
=
a
CA
=
b
,
AB
=
c
,且
a
+
b
+
c
=
0
,則
AM
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-π,g(x)=cosx.
(1)設(shè)h(x)=f(x)-g(x),若x1,x2∈[-
π
2
+2kπ,
π
2
+2kπ](k∈Z),求證:
h(x1)+h(x2)
2
≥h(
x1+x2
2
);
(2)若x1∈[
π
4
3
4
π],且f(xn+1)=g(xn),求證:|x1-
π
2
|+|x2-
π
2
|+…+|xn-
π
2
|<
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2+ax+b)e-x在x=1處取得極值.
(1)求b的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)E(4cosα,0),F(xiàn)(0,4sinα)(α∈R)為平面直角坐標(biāo)系xOy中的點(diǎn),點(diǎn)P為線段EF的中點(diǎn),當(dāng)α變化時(shí),點(diǎn)P形成的軌跡π與x軸交于點(diǎn)A,B(A點(diǎn)在左側(cè)),與y軸正半軸交與點(diǎn)C.
(1)求P點(diǎn)的軌跡π的方程;
(2)設(shè)點(diǎn)M是軌跡π上任意一點(diǎn)(不在坐標(biāo)軸上),直線CM交x軸于點(diǎn)D⊥,直線BM交直線AC于點(diǎn)N.
①若D點(diǎn)坐標(biāo)為(2
3
,0),求線段CM的長(zhǎng);
②求證:2kND-kMB為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種報(bào)紙,進(jìn)貨商當(dāng)天以每份進(jìn)價(jià)1元從報(bào)社購(gòu)進(jìn),以每份售價(jià)2元售出.若當(dāng)天賣不完,剩余報(bào)紙報(bào)社以每份0.5元的價(jià)格回收.根據(jù)市場(chǎng)統(tǒng)計(jì),得到這個(gè)季節(jié)的日銷售量X(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率.
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)若進(jìn)貨量為n(單位:份),當(dāng)n≥X時(shí),求利潤(rùn)Y的表達(dá)式;
(Ⅲ)若當(dāng)天進(jìn)貨量n=400,求利潤(rùn)Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x+1)2+y2=1,圓C2:(x-1)2+(y-4)2=1,動(dòng)圓C平分C1,C2的周長(zhǎng),求動(dòng)圓C圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(0,
π
2
),sin(α+
π
4
)=
3
5
,求sinα.

查看答案和解析>>

同步練習(xí)冊(cè)答案