9.以橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的頂點(diǎn)為頂點(diǎn),離心率為2的雙曲線方程(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1
C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1D.以上都不對(duì)

分析 由橢圓方程求出橢圓的頂點(diǎn)坐標(biāo),然后分類討論求得雙曲線方程.

解答 解:由橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,可得a2=16,b2=9,
∴橢圓的頂點(diǎn)坐標(biāo)為(±4,0),(0,±3).
若雙曲線的頂點(diǎn)在x軸上,則a=4,由e=$\frac{c}{a}=2$,得c=8,∴b2=c2-a2=48.
雙曲線方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1;
若雙曲線的頂點(diǎn)在y軸上,則a=3,由e=$\frac{c}{a}=2$,得c=6,∴b2=c2-a2=27.
雙曲線方程為$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1.
綜上,雙曲線方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1.
故選:B.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查雙曲線方程的求法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知R上的可導(dǎo)函數(shù)f(x)的圖象如圖所示,則不等式(x2-2x-3)f′(x)>0的解集為( 。
A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(-1,1)∪(3,+∞)D.(-∞,-1)∪(-1,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知點(diǎn)P為拋物線y2=8x上一點(diǎn),設(shè)P到此拋物線的準(zhǔn)線的距離為d1,到直線4x+3y+8=0的距離為d2,則d1+d2的最小值為$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.成書于公元五世紀(jì)的《張邱建算經(jīng)》是中國(guó)古代數(shù)學(xué)史上的杰作,該書中記載有很多數(shù)列問(wèn)題,說(shuō)明古人很早就注意到了數(shù)列并且有很深的研究,從下面這首古民謠中可知一二:
南山一棵竹,竹尾風(fēng)割斷,剩下三十節(jié),一節(jié)一個(gè)圈.頭節(jié)高五寸,頭圈一尺三
逐節(jié)多三分,逐圈少分三.一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是多遠(yuǎn)?
此民謠提出的問(wèn)題的答案是( 。
(注:①五寸即0.5尺.②一尺三即1.3尺.③三分即0.03尺.④分三即一分三厘,等于0.013尺.)
A.72.705尺B.61.395尺C.61.905尺D.73.995尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ln(x+2a)-ax,a>0.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)記f(x)的最大值為M(a),若a2>a1>0且M(a1)=M(a2),求證:${a_1}{a_2}<\frac{1}{4}$;
(Ⅲ)若a>2,記集合{x|f(x)=0}中的最小元素為x0,設(shè)函數(shù)g(x)=|f(x)|+x,求證:x0是g(x)的極小值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.?dāng)?shù)列{an}滿足2an=an+1+an+1(n≥2),且a1+a3+a5=9,a2+a4+a6=12則a3+a4+a5=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1中,與平面ACC1A1平行的棱共有( 。
A.2條B.3條C.4條D.6條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知F1(-3,0),F(xiàn)2(3,0)動(dòng)點(diǎn)M滿足|MF1|+|MF2|=10,則動(dòng)點(diǎn)M的軌跡方程$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知直線y=x+1與曲線y=alnx相切,若a∈(n,n+1)(n∈N*),則n=(  )(參考數(shù)據(jù):ln2≈0.7,ln3≈1.1)
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案