1.一個(gè)空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如下圖所示,則該幾何體的體積是( 。
A.$\frac{{32+8\sqrt{3}}}{3}$B.16C.12D.$32+8\sqrt{3}$

分析 判斷幾何體的形狀,利用三視圖的數(shù)據(jù)求解幾何體等體積即可.

解答 解:由三視圖知,這是一個(gè)橫放的底面為等腰梯形,高為4的直四棱柱,$V=\frac{2(1+3)}{2}×4=16$,

故選:B.

點(diǎn)評(píng) 本題考查三視圖求解幾何體的體積,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知矩形ABCD與直角梯形ABEF,∠DAF=∠FAB=90°,點(diǎn)G為DF的中點(diǎn),AF=EF=$\frac{1}{2}AB=\sqrt{3}$,P在線段CD上運(yùn)動(dòng).
(1)證明:BF∥平面GAC;
(2)當(dāng)P運(yùn)動(dòng)到CD的中點(diǎn)位置時(shí),PG與PB長(zhǎng)度之和最小,求二面角P-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}為等差數(shù)列,a1=3且(a3-1)是(a2-1)與a4的等比中項(xiàng).
(1)求an;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,bn=$\frac{{a}_{n}}{{S}_{n}-n}$,Tn=-b1+b2+b3+…+(-1)nbn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)的極坐標(biāo)為$(2,\frac{2π}{3})$那么它的直角坐標(biāo)為( 。
A.$(\sqrt{3},-1)$B.$(-\sqrt{3},-1)$C.$(-1,\sqrt{3})$D.$(-1,-\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.?dāng)S一顆骰子一次,設(shè)事件A=“出現(xiàn)奇數(shù)點(diǎn)”,事件B=“出現(xiàn)3點(diǎn)或4點(diǎn)”,則事件A,B的關(guān)系是( 。
A.互斥但不相互獨(dú)立B.相互獨(dú)立但不互斥
C.互斥且相互獨(dú)立D.既不相互獨(dú)立也不互斥

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù))與圓$\left\{\begin{array}{l}{x=4+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù))相切,則此直線的傾斜角α(α>$\frac{π}{2}$)等于( 。
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某商場(chǎng)為了了解太陽(yáng)鏡的月銷(xiāo)售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個(gè)月的月銷(xiāo)售量與當(dāng)月平均氣溫,其數(shù)據(jù)如表:由表中數(shù)據(jù)算出線性回歸方程$\stackrel{∧}{y}$=bx+a中的b=2,氣象部門(mén)預(yù)測(cè)下個(gè)月的平均氣溫約為20℃據(jù)此估計(jì)該商場(chǎng)下個(gè)月太陽(yáng)鏡銷(xiāo)售量約為(  )件.
月平均氣溫x(℃)381217
月銷(xiāo)售量y(件)24344454
A.46B.50C.54D.59

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系x0y中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,曲線C的極坐標(biāo)方程為$ρ=\frac{sinθ}{{1-{{sin}^2}θ}}$.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過(guò)點(diǎn)P(0,2)作斜率為1的直線l與曲線C交于A,B兩點(diǎn),
①求線段AB的長(zhǎng);  
②$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為$ρ=4sin(θ-\frac{π}{6})$.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)為P(x,y)為直線l與圓C所截得的弦上的動(dòng)點(diǎn),求$\sqrt{3}x+y$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案