12.在一圓柱中挖去一圓錐所得的工藝部件的三視圖如圖所示,則此工藝部件的表面積為( 。
A.(7+$\sqrt{5}$)πB.(7+2$\sqrt{5}$)πC.(8+$\sqrt{5}$)πD.(8+2$\sqrt{5}$)π

分析 通過(guò)三視圖可知該幾何體中圓柱高、底面半徑以及圓錐的高,進(jìn)而利用公式分別計(jì)算出圓柱側(cè)面積、圓柱上底面面積、圓錐側(cè)面積,相加即得結(jié)論.

解答 解:由三視圖可知,該幾何體中圓柱高h(yuǎn)=3,底面半徑R=1,圓錐的高h(yuǎn)'=2,
圓柱側(cè)面積S1=2πRh=6π,
圓柱上底面面積S2=πR2=π,
圓錐側(cè)面積S3=πR$\sqrt{{R}^{2}+(h')^{2}}$=$\sqrt{5}$π,
則所求表面積為S1+S2+S3=6π+π+$\sqrt{5}$π=7π+$\sqrt{5}$π,
故選:A.

點(diǎn)評(píng) 本題考查通過(guò)三視圖求幾何體的表面積,涉及圓錐、圓柱的側(cè)面積,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知cos($\frac{π}{6}$+α)=$\frac{\sqrt{3}}{3}$,則cos($\frac{5π}{6}$-α)的值為-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若a>0,b>0,且42a+b=2ab,則a+b的最小值是( 。
A.12B.6+2$\sqrt{2}$C.6+4$\sqrt{2}$D.6+4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若關(guān)于x的不等式x2+ax-c<0的解集為{x|-2<x<1},且函數(shù)$y=a{x^3}+m{x^2}+x+\frac{c}{2}$在區(qū)間$({\frac{1}{2},1})$上不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.$(-2,-\sqrt{3})$B.$[{-3,-\sqrt{3}}]$C.$({-∞,-2})∪({\sqrt{3},+∞})$D.$({-∞,-2})∪({-\sqrt{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.富華中學(xué)的一個(gè)文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進(jìn)行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來(lái)找圖書(shū)管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉?duì)象.劉老師猜了三句話:“①?gòu)埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不?huì)研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對(duì)了一句,據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是(  )
A.曹雪芹、莎士比亞、雨果B.雨果、莎士比亞、曹雪芹
C.莎士比亞、雨果、曹雪芹D.曹雪芹、雨果、莎士比亞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在極坐標(biāo)系下,知圓O:ρ=cosθ+sinθ和直線$l:ρsin({θ-\frac{π}{4}})=\frac{{\sqrt{2}}}{2}({ρ≥0,0≤θ≤2π})$.
(1)求圓O與直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求圓O和直線l的公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.經(jīng)過(guò)點(diǎn)(1,1)和(-2,4)的直線的一般式方程是x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若函數(shù)y=sin3x+acos3x的圖象關(guān)于$x=-\frac{π}{9}$對(duì)稱,則a=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知點(diǎn)A是以BC為直徑的圓O上異于B,C的動(dòng)點(diǎn),P為平面ABC外一點(diǎn),且平面PBC⊥平面ABC,BC=3,PB=2$\sqrt{2}$,PC=$\sqrt{5}$,則三棱錐P-ABC外接球的表面積為10π.

查看答案和解析>>

同步練習(xí)冊(cè)答案