12.如果$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$是二元一次方程組$\left\{\begin{array}{l}{ax+by=1}\\{bx+ay=2}\end{array}\right.$的解,那么a,b的值是(  )
A.$\left\{\begin{array}{l}{a=-1}\\{b=0}\end{array}\right.$B.$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$C.$\left\{\begin{array}{l}{a=0}\\{b=1}\end{array}\right.$D.$\left\{\begin{array}{l}{a=0}\\{b=-1}\end{array}\right.$

分析 由題意,$\left\{\begin{array}{l}{a+2b=1}\\{b+2a=2}\end{array}\right.$,解方程組,求出a,b的值.

解答 解:由題意,$\left\{\begin{array}{l}{a+2b=1}\\{b+2a=2}\end{array}\right.$,∴a=1,b=0,
故選B.

點(diǎn)評(píng) 本題考查解方程組,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=4x-2x-6的零點(diǎn)為log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a5=2,且a3是a1與-$\frac{8}{5}$的等比中項(xiàng),
(1)求數(shù)列{an}的通項(xiàng)公式
(2)若a1為整數(shù),求證:$\sum_{i=1}^{n}\frac{1}{2{S}_{i}+23i}$>$\frac{n}{3n+3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某學(xué)校為調(diào)查高三年學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1)和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.
(I)試問(wèn)在抽取的學(xué)生中,男、女生各有多少人?
(II)根據(jù)頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大的把握認(rèn)為“身高與性別有關(guān)”?
≥170cm<170cm總計(jì)
男生身高301040
女生身高43640
總計(jì)344680
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4450.7081.3232.0722.7063.8415.0246.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a>0,b>0,若不等式$\frac{mab}{3a+b}≤a+3b$恒成立,則m的最大值為( 。
A.4B.4C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x1,x2是一元二次方程$\frac{1}{2}{x^2}-x-3=0$的兩個(gè)實(shí)數(shù)根,則$x_1^2+x_2^2$=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某公司從1999年的年產(chǎn)值100萬(wàn)元,增加到10年后2009年的500萬(wàn)元,如果每年產(chǎn)值增長(zhǎng)率相同,則每年的平均增長(zhǎng)率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1中,M和N分別為A1B1和B1C1的中點(diǎn),那么直線(xiàn)AM與CN所成角的余弦值是    ( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分圖象如圖所示.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)把函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)$h(x)=ax+\frac{1}{2}g(2x)-g(x)$在(-∞,+∞)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案