已知以為周期的函數(shù),其中。若方程
恰有5個(gè)實(shí)數(shù)解,則的取值范圍為
解析試題分析:據(jù)對函數(shù)的解析式進(jìn)行變形后發(fā)現(xiàn)當(dāng)x∈(-1,1],[3,5],[7,9]上時(shí),f(x)的圖象為半個(gè)橢圓.根據(jù)圖象推斷要使方程恰有5個(gè)實(shí)數(shù)解,則需直線y= 與第二個(gè)橢圓相交,而與第三個(gè)橢圓不公共點(diǎn).把直線分別代入橢圓方程,根據(jù)△可求得m的范圍。解:∵當(dāng)x∈(-1,1]時(shí),將函數(shù)化為方程(y≥0),∴實(shí)質(zhì)上為一個(gè)半橢圓,其圖象如圖所示,同時(shí)在坐標(biāo)系中作出當(dāng)x∈(1,3]得圖象,再根據(jù)周期性作出函數(shù)其它部分的圖象,由圖易知直線 y=與第二個(gè)橢圓相交,而與第三個(gè)半橢圓無公共點(diǎn)時(shí),方程恰有5個(gè)實(shí)數(shù)解,將y=代入中得到,,(9m2+1)x2-72m2x+135m2=0,令t=9m2(t>0),則(t+1)x2-8tx+15t=0,由△=(8t)2-4×15t (t+1)>0,得t>15,由9m2>15,且m>0得 m >,同樣由y=代入由△<0可計(jì)算得 m< ,故可知m的范圍
考點(diǎn):函數(shù)與方程
點(diǎn)評:解決的關(guān)鍵是利用函數(shù)的周期性以及方程的解的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
奇函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/85/9/lsbvu.png" style="vertical-align:middle;" />,若時(shí),的圖象如圖所示,則不等式
的解集為________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com