14.已知a>b,則下列不等式正確的是( 。
A.ac>bcB.a2>b2C.|a|<|b|D.2a>2b

分析 對于A,B,C舉反例即可,對于D根據(jù)指數(shù)函數(shù)的單調(diào)性可判斷.

解答 解:對于A:當(dāng)c≤0時(shí)不成立,
對于B,當(dāng)a=1,b=-2,則不成立,
對于C:當(dāng)a=3,b=1時(shí),則不成立,
對于D:根據(jù)指數(shù)函數(shù)的單調(diào)性可得D正確,
故選:D

點(diǎn)評 本題考查了不等式的基本性質(zhì)和指數(shù)函數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,角A、B、C的對邊分別為a、b、c,$\frac{π}{3}$-A=B,a=3,b=5,則c=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.計(jì)算:(2+5i)-|3-4i|+|5+12i|i=-3+18i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.方程$\sqrt{{x^2}+{{(y-2)}^2}}+\sqrt{{x^2}+{{(y+2)}^2}}=10$化簡的結(jié)果是( 。
A.$\frac{x^2}{25}+\frac{y^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{21}=1$C.$\frac{x^2}{25}+\frac{y^2}{4}=1$D.$\frac{y^2}{25}+\frac{x^2}{21}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|-1≤x≤1},B={x|x2-2x<0},則A∪(∁UB)=( 。
A.(-∞,1]∪[2,+∞)B.[1,2]C.[0,1]D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)向量$\overrightarrow{OM}$、$\overrightarrow{ON}$是夾角為60°的兩個(gè)單位向量,向量$\overrightarrow{OP}$=x•$\overrightarrow{OM}$+y•$\overrightarrow{ON}$,(x、y為實(shí)數(shù)).若△PMN是以點(diǎn)M為直角頂點(diǎn)的直角三角形,則x-y的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=loga(x-1)+log${\;}_{\frac{1}{a}}$3(a>0,且a≠1),若f(3a+1)>f(2a)>0,則實(shí)數(shù)a的取值范圍是a>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知下列關(guān)系式;①$0•\overrightarrow a=\overrightarrow 0$:②$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow a$;③($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$);④${\overrightarrow a^2}={|{\overrightarrow a}|^2}$;⑤$|{\overrightarrow a•\overrightarrow b}|≤\overrightarrow b•\overrightarrow a$.其中正確關(guān)系式的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義:區(qū)間[c,d](c<d)的長度為d-c.已知函數(shù)y=|log2x|的定義域?yàn)閇a,b],值域?yàn)閇0,2],則區(qū)間[a,b]長度的最大值與最小值的差等于3.

查看答案和解析>>

同步練習(xí)冊答案