13.若a<b,d<c,并且(c-a)(c-b)<0,(d-a)(d-b)>0,則a、b、c、d的大小關(guān)系是(  )
A.d<a<c<bB.a<c<b<dC.a<d<b<cD.a<d<c<b

分析 由已知中a<b,d<c,并且(c-a)(c-b)<0,(d-a)(d-b)>0,結(jié)合同號(hào)兩數(shù)積為正,異號(hào)兩數(shù)積為負(fù),可得答案.

解答 解:∵a<b,(c-a)(c-b)<0,
∴a<c<b,
∵(d-a)(d-b)>0,
∴d<a<b,或a<b<d,
又∵d<c,
∴d<a<b,
綜上可得:d<a<c<b,
故選:A

點(diǎn)評 本題考查的知識(shí)點(diǎn)是不等式比較大小,實(shí)數(shù)的性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖程序,若輸出的結(jié)果是4,則輸入的x的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=4sinxcos({x+\frac{π}{3}})+4\sqrt{3}{sin^2}x-\sqrt{3}$.
(Ⅰ)求$f({\frac{π}{3}})$的值;
(Ⅱ)求f(x)圖象的對稱軸方程;
(Ⅲ)求f(x)在$[{-\frac{π}{4}\;,\;\frac{π}{3}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列各式錯(cuò)誤的是(  )
A.30.8>30.7B.log0.50.4>log0.50.6
C.0.75-0.1<0.750.1D.log2$\sqrt{3}$>log3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(∁UA)∪B為( 。
A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)U=R,A={x|2x<1},B={x|log2x<0},則B∩(∁UA)=( 。
A.{x|x<0}B.{x|x>1}C.{x|0<x<1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若f(x)=ax2+(a-2)x+a2是偶函數(shù),則${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{28}{3}$+2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求證:$\frac{1-2sinxcosx}{co{s}^{2}x-si{n}^{2}x}$=$\frac{1-tanx}{1+tanx}$,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,a1=$\frac{1}{3}$,an=(-1)n×2an-1,(n≥2,n∈N*),則a5=-$\frac{16}{3}$.

查看答案和解析>>

同步練習(xí)冊答案