3.若tan(π+θ)=2,則$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值為$\frac{3}{4}$.

分析 tan(π+θ)=2,可得tanθ=2,利用“弦化切”即可得出.

解答 解:∵tan(π+θ)=2,∴tanθ=2,
則$\frac{2sinθ-cosθ}{sinθ+2cosθ}$=$\frac{2tanθ-1}{tanθ+2}$=$\frac{2×2-1}{2+2}$=$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了“弦化切”、誘導(dǎo)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知-1,a1,a2,-9成等差數(shù)列,-9,b1,b2,b3,-1成等比數(shù)列,則b2(a2-a1)的值為( 。
A.8B.-8C.±8D.$±\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知$\overrightarrow a=(sinx,cosx),\overrightarrow b=(sinx,sinx),f(x)=2\overrightarrow a•\overrightarrow b$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)若$g(x)=f(x),x∈[{-\frac{π}{2},\frac{π}{2}}]$,畫出函數(shù)y=g(x)的圖象,討論y=g(x)-m(m∈R)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對(duì)邊長是a,b,c公差為1的等差數(shù)列,且C=2A.
(Ⅰ)求a,b,c;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知隨機(jī)變量Z~N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
附:若Z~N(μ,σ2),則 P(μ-σ<Z≤μ+σ)=0.6826;P(μ-2σ<Z≤μ+2σ)=0.9544;P(μ-3σ<Z≤μ+3σ)=0.9974.
A.6038B.6587C.7028D.7539

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,AB=2,cosB=$\frac{1}{3}$,點(diǎn)D在線段BC上.
(1)若∠ADC=$\frac{3}{4}$π,求AD的長;
(2)若BD=2DC,△ADC的面積為$\frac{4}{3}$$\sqrt{2}$,求$\frac{sin∠BAD}{sin∠CAD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點(diǎn)A是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a,b>0)右支上一點(diǎn),F(xiàn)是右焦點(diǎn),若△AOF(O是坐標(biāo)原點(diǎn))是等邊三角形,則該雙曲線離心率e為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知銳角α,β滿足$cosα=\frac{{2\sqrt{5}}}{5},sin({α-β})=-\frac{3}{5}$,則sinβ的值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2acosC-c=2b.
(Ⅰ)求角A的大小;
(Ⅱ)若c=$\sqrt{2}$,角B的平分線BD=$\sqrt{3}$,求a.

查看答案和解析>>

同步練習(xí)冊(cè)答案