a>b>1,f(x)=
x
x-1
,比較f(a)與f(b)的大。
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù) f(x)=1+
1
x-1
在(1,+∞)上是減函數(shù),而且a>b>1,可得 f(a)與f(b)的大小.
解答: 解:∵f(x)=
x
x-1
=
x-1+1
x-1
=1+
1
x-1
 在(1,+∞)上是減函數(shù),
而且a>b>1,∴f(a)<f(b).
點評:本題主要考查利用函數(shù)的單調(diào)性判斷兩個函數(shù)的值的大小,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-
m
x+1=0},若A∩R=∅,則實數(shù)m的取值范圍為( 。
A、m<4B、m>4
C、0<m<4D、0≤m<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=msin
π
4
x+mcos
π
4
x(m>0),若直線y=2是函數(shù)f(x)圖象的一條切線.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)圖象上的兩點M、N的橫坐標(biāo)依次為2和4,O為坐標(biāo)原點,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=axlnx(a∈R)在x=e處的切線斜率為2.
(1)求f(x)的最小值;
(2)設(shè)A(x1,f(x1))與B(x2,f(x2))(x1<x2)是函數(shù)y=f(x)圖象上的兩點,直線AB的斜率為k,函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若存在x0>0,使f′(x0)=k.求證:x2>x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=1,向量
a
b
的夾角為60°
(1)計算
a
b
;
(2)|
a
-
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=2x2(x-a).
(1)求函數(shù)f(x)在區(qū)間[1,2]上最小值h(a);
(2)對(1)中的h(a),若關(guān)于a的方程h(a)=k(a+1)有兩個不同的實數(shù)解,求實數(shù)k的取值范圍;
(3)若點A(a1,h(a1)),B(a2,h(a2)),C(a3,h(a3)),從左到右依次是函數(shù)y=h(a)圖象上三點,且這三點不共線,求證:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(1,0),B (2,0).動點M滿足
AB
BM
+
2
|
AM
|=0,
(1)求點M的軌跡C;
(2)若過點B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-a|+3x,(a∈R).
(1)求不等式f(x)>3x+1的解集;
(2)若不等式f(x)≤0的解集為{x|x≤-1},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:|x-1|+|x-2|≤2.

查看答案和解析>>

同步練習(xí)冊答案