f(x)=
(x-1)lnx
x-3
的零點(diǎn)的個(gè)數(shù)為
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)=
(x-1)lnx
x-3
的零點(diǎn)的個(gè)數(shù)即方程
(x-1)lnx
x-3
=0的解的個(gè)數(shù),解方程即可.
解答: 解:f(x)=
(x-1)lnx
x-3
的零點(diǎn)的個(gè)數(shù)即方程
(x-1)lnx
x-3
=0的解的個(gè)數(shù),
即(x-1)lnx=0且x-3≠0;
解得,x=1;
故f(x)=
(x-1)lnx
x-3
的零點(diǎn)的個(gè)數(shù)為1;
故答案為:1.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)與方程的根的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(-x)+f(x)=0,且當(dāng)x∈(-1,0)時(shí),f(x)=-
3x
9x+1

(1)求函數(shù)f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性;
(3)當(dāng)λ取何值時(shí),方程f(x)=λ在(-1,1)上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx-2sin2
ωx
2
(ω>0)的最小正周期為3π.在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),g(x)的導(dǎo)函數(shù)分別為f′(x),g′(x)且f′(x)<g′(x).則下列結(jié)論一定成立的是( 。
A、f(1)+g(0)<g(1)+f(0)
B、f(1)+g(0)>g(1)+f(0)
C、f(1)-g(0)>g(1)-f(0)
D、f(1)-g(0)<g(1)-f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠去年初完成了生產(chǎn)設(shè)備的升級(jí),它每年的總產(chǎn)量y(萬(wàn)噸)與設(shè)備升級(jí)后的時(shí)間x(年)的函數(shù)關(guān)系近似地符合函數(shù)模型y=a
x
+b,已知該廠去年、今年的總產(chǎn)量分別為440(萬(wàn)噸)、240
2
+200 (萬(wàn)噸),則明年的總產(chǎn)量約為
 
(萬(wàn)噸).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是單調(diào)函數(shù),又是奇函數(shù)的是(  )
A、y=x5
B、y=5x
C、y=log2x
D、y=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x-2x+m(m為常數(shù)),則f(-2)等于( 。
A、-
5
2
B、-1
C、1
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)(
2
,2)在冪函數(shù)f(x)的圖象上,點(diǎn)(-2,
1
4
)在冪函數(shù)g(x)的圖象上.
(1)求f(x)與g(x)的解析式;
(2)當(dāng)x為何值時(shí),有f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,且b=
3
,c=2
(Ⅰ)若B=60°,求△ABC的面積;
(Ⅱ)若A=2B,求邊長(zhǎng)a.

查看答案和解析>>

同步練習(xí)冊(cè)答案