要得到f(x)=cos(2x+
π
3
)
的圖象,只需把y=sin2x的圖象(  )
A、向左平移
12
個(gè)單位長(zhǎng)度
B、向右平移
12
個(gè)單位長(zhǎng)度
C、向左平移
12
個(gè)單位長(zhǎng)度
D、向右平移
12
個(gè)單位長(zhǎng)度
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:將兩個(gè)函數(shù)化為同名函數(shù),結(jié)合三角函數(shù)的平移規(guī)律即可得到結(jié)論.
解答: 解:y=sin2x=cos(
π
2
-2x)=cos(2x-
π
2
),
f(x)=cos(2x+
π
3
)
=cos[2(x+
12
)-
π
2
]的圖象,
∴只需把y=sin2x的圖象向左平移
12
個(gè)單位長(zhǎng)度,即可,
故選:A.
點(diǎn)評(píng):本題主要考查三角函數(shù)圖象之間的關(guān)系,利用了y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,c,d滿足
lna
b
=
d2-2d
-c2
=1,則(a-c)2+(b-d)2的最小值為(  )
A、
2
-1
B、2-
2
C、3-2
2
D、1-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,若輸入的n是30,則輸出的變量S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(x-4,1),
b
=(x+5,y),x,y∈(0,+∞),且
a
b
,則xy取最小值時(shí)y的值為( 。
A、3
B、
5
2
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下事件:
(1)連續(xù)投擲骰子兩次,擲得的點(diǎn)數(shù)和為16
(2)若集合A,B,C,滿足A⊆B,B⊆C,則A⊆C
(3)騎車通過(guò)5個(gè)十字路口,一路綠燈
(4)技術(shù)發(fā)達(dá)后,不需要任何能量的永動(dòng)機(jī)將會(huì)出現(xiàn)
(5)一教師在講臺(tái)上隨手拋出一段粉筆頭,粉筆頭最后落下
屬于隨機(jī)事件的有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)y=cos4x-sin4x取最大值時(shí),x值的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(5,2),且在x軸上截距是在y軸上截距的2倍的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定義域均為[-π,π],且它們?cè)趚∈[0,π]上的圖象如圖所示,則不等式
f(x)
g(x)
<0的解集為( 。
A、(-
3
π
3
B、(
π
3
,π)
C、(-
3
,
π
3
)∪(
π
3
,π)
D、(-
π
3
,0)∪(
π
3
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校要安排一場(chǎng)文藝玩會(huì)的11個(gè)節(jié)目的出場(chǎng)順序,除第1個(gè)節(jié)目和最后1個(gè)節(jié)目已確定外,4個(gè)音樂(lè)節(jié)目要求排在第2、5、7、10的位置,3個(gè)舞蹈節(jié)目要求排在第3、6、9的位置,2個(gè)曲藝節(jié)目要求排在第4、8位置,共有多少種不同的排法?

查看答案和解析>>

同步練習(xí)冊(cè)答案