【題目】已知橢圓: ,過點作圓的切線交橢圓于、兩點.
(Ⅰ)求橢圓的焦點坐標和離心率;
(Ⅱ)將表示成的函數(shù),并求的最大值.
【答案】(1)(2)的最大值為2.
【解析】試題分析: 由題意及橢圓和圓的標準方程,利用橢圓離心率的定義和點到直線的距離公式即可求解;
由題意推出,通過當(dāng) ,當(dāng)時,設(shè)切線方程為
,聯(lián)立直線與橢圓方程,利用韋達定理弦長公式以及圓的圓心到直線的距離等于半徑,轉(zhuǎn)化求解,利用基本不等式求出最值即可。
解析:(Ⅰ)橢圓的半長軸長,半短軸長,半焦距,
焦點坐標是, ,離心率是;
(Ⅱ)易知,當(dāng)時,切線方程為或,
此時
當(dāng)時,易知切線方程斜率不為0,可設(shè)切線的方程為: ,
即,則,得: ①
聯(lián)立: ,得: ,整理:
其中
②
代入②:,
而,等號成立當(dāng)且僅當(dāng),
即時.
綜上, 的最大值為2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)綜》是明朝程大位所著數(shù)學(xué)名著,其中有這樣一段表述:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一”,其意大致為:有一七層寶塔,每層懸掛的紅燈數(shù)為上一層的兩倍,共有381盞燈,則塔從上至下的第三層有( )盞燈.
A.14
B.12
C.10
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點在線段上運動,則下列判斷中不正確的是 ( )
A. 與所成角的范圍是
B.
C.
D. 三棱錐的體積不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是圓上任意一點,過作軸的垂線段, 為垂足.當(dāng)點在圓上運動時,線段中點的軌跡為曲線(包括點和點),為坐標原點.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線相切,且與圓相交于兩點,當(dāng)的面積最大時,試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
()若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.
()是否存在常數(shù),當(dāng)時, 在值域為區(qū)間且?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)證明當(dāng)時,關(guān)于的不等式恒成立;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過軸上動點引拋物線的兩條切線、, 、為切點,設(shè)切線、的斜率分別為和.
(Ⅰ)求證: ;
(Ⅱ)求證:直線恒過頂點,并求出此定點坐標;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的右準線的方程為,焦距為.
(1)求橢圓的方程;
(2)過定點作直線與橢圓交于點(異于橢圓的左、右頂點)兩點,設(shè)直線與直線相交于點.
①若,試求點的坐標;
②求證:點始終在一條直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com