【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,AA1 , AB,CC1的中點分別為E,F(xiàn),G,則EF與A1G所成的角為(

A.30°
B.45°
C.60°
D.90°

【答案】B
【解析】解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1中棱長為2,
則E(2,0,1),F(xiàn)(2,1,0),A1(2,0,2),G(0,2,1),
=(0,1,﹣1), =(﹣2,2,﹣1),
設EF與A1G所成的角為θ,
則cosθ= = = ,
∴θ=45°.
∴EF與A1G所成的角為45°.
故選:B.

【考點精析】根據(jù)題目的已知條件,利用異面直線及其所成的角的相關知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線方程為x﹣2y﹣5=0.
(1)求AC邊所在直線方程;
(2)求頂點C的坐標;
(3)求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x≤0時,f(x)=x2+2x.

(1)求函數(shù)f(x)(x∈R)的解析式;
(2)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補全完整函數(shù)f(x)的圖象;
(3)求使f(x)>0的實數(shù)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題。
(1)已知方程x2+(m﹣3)x+m=0有兩個不等正實根,求實數(shù)m的取值范圍.
(2)不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0對任意x∈R恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以 為一條漸近線的雙曲線C的右焦點為
(1)求該雙曲線C的標準方程;
(2)若斜率為2的直線l在雙曲線C上截得的弦長為 ,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F并且經(jīng)過點A(1,﹣2).
(1)求拋物線C的方程;
(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點,O為坐標原點,求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果將函數(shù)f(x)=sin2x圖象向左平移φ(φ>0)個單位,函數(shù)g(x)=cos(2x﹣ )圖象向右平移φ個長度單位后,二者能夠完全重合,則φ的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n的值為10,則輸出S的值是(
A.45
B.46
C.55
D.56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個命題: ①若直線a,b異面,b,c異面,則a,c異面;
②若直線a,b相交,b,c相交,則a,c相交;
③若a∥b,則a,b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c.
其中真命題的個數(shù)為(
A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習冊答案