14.△ABC中,c=$\sqrt{3}$,b=1,∠B=30°,則△ABC的面積等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$

分析 由已知及正弦定理可求sinC,結(jié)合范圍C∈(0°,180°),可得C,利用三角形內(nèi)角和定理可求A,進(jìn)而利用三角形面積公式即可計(jì)算得解.

解答 解:∵c=$\sqrt{3}$,b=1,∠B=30°,
∴由正弦定理可得:sinC=$\frac{csinB}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
∵C∈(0°,180°),可得:C=60°,或120°,
∴A=180°-B-C=90°,或30°,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{2}$,或$\frac{\sqrt{3}}{4}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某幾何體的正視圖和側(cè)視圖如圖①,它的俯視圖的直觀圖為矩形O1A1B1C1如圖②,其中O1A1=6,O1C1=2,則該幾何體的體積為( 。
A.16$\sqrt{2}$B.32$\sqrt{2}$C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若log${\;}_{\sqrt{3}}$x+log${\;}_{\sqrt{3}}$y=2,則3x+2y的最小值為6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在數(shù)列{an},{bn}中,已知a1=2,b1=4,且-an,bn,an+1成等差數(shù)列,-bn,an,bn+1也成等差數(shù)列.
(Ⅰ)求證:數(shù)列{an+bn}和{an-bn}都是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若cn=(an-3n)log3[an-(-1)n],求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.近年來(lái),手機(jī)已經(jīng)成為人們?nèi)粘I钪胁豢扇鄙俚漠a(chǎn)品,手機(jī)的功能也日趨完善,已延伸到了各個(gè)領(lǐng)域,如拍照,聊天,閱讀,繳費(fèi),購(gòu)物,理財(cái),娛樂(lè),辦公等等,手機(jī)的價(jià)格差距也很大,為分析人們購(gòu)買手機(jī)的消費(fèi)情況,現(xiàn)對(duì)某小區(qū)隨機(jī)抽取了200人進(jìn)行手機(jī)價(jià)格的調(diào)查,統(tǒng)計(jì)如下:
年齡         價(jià)格5000元及以上3000元-4999元1000元-2999元1000元以下
45歲及以下1228664
45歲以上3174624
(Ⅰ)完成關(guān)于人們使用手機(jī)的價(jià)格和年齡的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下,認(rèn)為人們使用手機(jī)的價(jià)格和年齡有關(guān)?
(Ⅱ)從樣本中手機(jī)價(jià)格在5000元及以上的人群中選擇3人調(diào)查其收入狀況,設(shè)3人中年齡在45歲及以下的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
附K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.0250.0100.001
k3.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知命題p:?x∈R,x2+2x-a>0.若p為真命題,則實(shí)數(shù)a的取值范圍是( 。
A.a>-1B.a<-1C.a≥-1D.a≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)F為拋物線C:y2=3x的焦點(diǎn),過(guò)F作直線交拋物線C于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB面積的最小值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知cos($\frac{π}{12}$-θ)=$\frac{1}{3}$,則sin(2θ+$\frac{π}{3}$)=$-\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.拋物線x2=2py(p>0)的準(zhǔn)線方程為y=-3,則p=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案