20.在空間直角坐標(biāo)系中,點(diǎn)P(-1,-2,-3)到平面yOz的距離是(  )
A.1B.2C.3D.$\sqrt{14}$

分析 利用點(diǎn)P(x,y,z)到坐標(biāo)平面yoz的距離為|x|即可得出.

解答 解:在空間直角坐標(biāo)系中,點(diǎn)P(-1,-2,-3)到平面yOz的距離是:1.
∴故選:A.

點(diǎn)評 熟練掌握點(diǎn)A(x,y,z)到坐標(biāo)平面yoz的距離為|x|是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C的兩個(gè)焦點(diǎn)分別為${F_1}({-2\sqrt{2},0})$,${F_2}({2\sqrt{2},0})$,長軸長為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),試探究原點(diǎn)O是否在以線段AB為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}}$-$\frac{2k-1}{x}$,g(x)=$\frac{1}{x}$+klnx,(k為常數(shù),e=2.71828…)
(1)記h(x)=f(x)-g(x),若函數(shù)h(x),在(0,2),內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍;
(2)若在區(qū)間(0,e]內(nèi)至少存在一個(gè)數(shù)x0,使得g(x0)<0成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}{x_i}=90,\sum_{i=1}^{10}{{y_i}=15,\sum_{i-1}^{10}{{x_i}{y_i}=189}},\sum_{i=1}^{10}{x_i^2}=990$
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān)
(3)若該居民區(qū)某家庭的月收入為7千元,預(yù)測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$P({B|A})=\frac{3}{10}$,$P(A)=\frac{1}{5}$,則P(AB)=$\frac{3}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示,邊長為4的正方形中有一封閉心形曲線圍成的陰影區(qū)域,在正方形中,隨機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率約為$\frac{1}{4}$,則陰影區(qū)域的面積約為( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.sin4α+sin2αcos2α+cos2α=( 。
A.1B.cos2αC.2D.sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則f(-6)+f(log25)=( 。
A.3B.6C.9D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(m,1),若|$\overrightarrow{a}$|=2,則m=( 。
A.±$\sqrt{3}$B.$\sqrt{3}$C.1D.±1

查看答案和解析>>

同步練習(xí)冊答案