6.已知函數(shù)f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸相切于原點(diǎn),且x軸與函數(shù)圖象所圍成區(qū)域(圖中陰影部分)的面積為$\frac{1}{12}$,則a的值為( 。
A.0B.1C.-1D.-2

分析 由x=0是f(x)=0的一個極值點(diǎn),可得f′(0)=0,求得b的值,確定出f(x)的解析式,由于陰影部分面積為$\frac{1}{12}$,利用定積分求面積的方法列出關(guān)于a的方程求出a并判斷a的取舍即可

解答 解:由f(x)=-x3+ax2+bx,得f′(x)=-3x2+2ax+b.
∵x=0是原函數(shù)的一個極值點(diǎn),
∴f′(0)=b=0.
∴f(x)=-x2(x-a),有∫a0(x3-ax2)dx=($\frac{1}{4}{x}^{4}-\frac{1}{3}a{x}^{3}$)|a0=0-$\frac{{a}^{4}}{4}$+$\frac{{a}^{4}}{3}$=$\frac{{a}^{4}}{12}$=$\frac{1}{12}$,
∴a=±1.
函數(shù)f(x)與x軸的交點(diǎn)橫坐標(biāo)一個為0,另一個a,根據(jù)圖形可知a<0,得a=-1.
故選:C

點(diǎn)評 本題主要考查了定積分在求面積中的應(yīng)用,以及定積分的運(yùn)算法則,同時考查了計算能力和識圖能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A(1,-4),B(-5,4),則以AB為直徑的圓的標(biāo)準(zhǔn)方程是(x+2)2+y2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓N經(jīng)過點(diǎn)A(3,1),B(-1,3),且它的圓心在直線3x-y-2=0上.
(Ⅰ)求圓N的方程;
(Ⅱ)求圓N關(guān)于直線x-y+3=0對稱的圓的方程.
(Ⅲ)若點(diǎn)D為圓N上任意一點(diǎn),且點(diǎn)C(3,0),求線段CD的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an},{bn}滿足a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{3{a}_{n}+2}$,anbn=1,則使bn>101的最小的n為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知單調(diào)遞增數(shù)列{an}滿足an=3n-λ•2n(其中λ為常數(shù),n∈N+),則實(shí)數(shù)λ的取值范圍是( 。
A.λ≤3B.λ<3C.λ≥3D.λ>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知m,n都是實(shí)數(shù),m≠0,f(x)=|x-1|+|x-2|.
(Ⅰ)若f(x)>2,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若|m+n|+|m-n|≥|m|f(x)對滿足條件的所有m,n都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)的反函數(shù)是y=$\frac{1}{{3}^{x}}$,則函數(shù)f(2x-x2)的減區(qū)間為(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知sin2α=$\frac{2}{3}$,則cos2(α+$\frac{π}{4}$)=( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{1}{6}$C.$\frac{\sqrt{6}}{6}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)計算:(-$\frac{7}{8}$)0+8${\;}^{\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$.
(2)化簡:log3$\sqrt{27}-{log_3}\sqrt{3}+lg25+lg4+ln({e^2})$.

查看答案和解析>>

同步練習(xí)冊答案