【題目】博覽會安排了分別標(biāo)有序號為“1號”“2號”“3號”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

【答案】C

【解析】

將三輛車的出車可能順序一一列出,找出符合條件的即可.

三輛車的出車順序可能為:123、132、213、231、312、321

方案一坐車可能:132、213、231,所以,P1

方案二坐車可能:312、321,所以,P1;

所以P1+P2

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間;

2)判斷上的零點(diǎn)的個(gè)數(shù),并說明理由.(提示:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ax3+3x2+3x(a≠0).

1)討論函數(shù)f(x)的單調(diào)性;

2)若函數(shù)f(x)在區(qū)間(1,2)是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)(a為常數(shù)).

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率為.

1)求橢圓的方程;

2)過點(diǎn)作兩條互相垂直的弦分別與橢圓交于點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】半期考試后,班長小王統(tǒng)計(jì)了50名同學(xué)的數(shù)學(xué)成績,繪制頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖,估計(jì)這50名同學(xué)的數(shù)學(xué)平均成績;

用分層抽樣的方法從成績低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績均在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓C:的左右焦點(diǎn)分別為,直線l:與橢圓C交于A,B兩點(diǎn)為坐標(biāo)原點(diǎn).

若直線l過點(diǎn),且,求直線l的方程;

若以AB為直徑的圓過點(diǎn)O,點(diǎn)P是線段AB上的點(diǎn),滿足,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓C:的左右焦點(diǎn)分別為F1,F(xiàn)2,直線l:y=kx+m與橢圓C交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).

(1)若直線l過點(diǎn)F1,且|AB|=,求k的值;

(2)若以AB為直徑的圓過原點(diǎn)O,試探究點(diǎn)O到直線AB的距離是否為定值?若是,求出該定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCDE,F分別是ABPD的中點(diǎn),且PA=AD

(Ⅰ)求證:AF∥平面PEC;

(Ⅱ)求證:平面PEC⊥平面PCD

查看答案和解析>>

同步練習(xí)冊答案