【題目】設(shè){an}是公比不為1的等比數(shù)列,其前n項(xiàng)和為Sn , 且a5 , a3 , a4成等差數(shù)列.
(1)求數(shù)列{an}的公比;
(2)證明:對任意k∈N+ , Sk+2 , Sk , Sk+1成等差數(shù)列.
【答案】
(1)
解:設(shè){an}的公比為q(q≠0,q≠1)
∵a5,a3,a4成等差數(shù)列,∴2a3=a5+a4,
∴
∵a1≠0,q≠0,
∴q2+q﹣2=0,解得q=1或q=﹣2
∵q≠1,
∴q=﹣2
(2)
證明:對任意k∈N+,Sk+2+Sk+1﹣2Sk=(Sk+2﹣Sk)+(Sk+1﹣Sk)=ak+2+ak+1+ak+1=2ak+1+ak+1×(﹣2)=0
∴對任意k∈N+,Sk+2,Sk,Sk+1成等差數(shù)列.
【解析】(1)設(shè){an}的公比為q(q≠0,q≠1),利用a5 , a3 , a4成等差數(shù)列結(jié)合通項(xiàng)公式,可得 ,由此即可求得數(shù)列{an}的公比;(2)對任意k∈N+ , Sk+2+Sk+1﹣2Sk=(Sk+2﹣Sk)+(Sk+1﹣Sk)=ak+2+ak+1+ak+1=2ak+1+ak+1×(﹣2)=0,從而得證.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等比數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:),還要掌握等差數(shù)列的性質(zhì)(在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若曲線上點(diǎn)處的切線過點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(II)若函數(shù)在區(qū)間內(nèi)無零點(diǎn),求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)10≤x1<x2<x3<x4≤104 , x5=105 , 隨機(jī)變量ξ1取值x1、x2、x3、x4、x5的概率均為0.2,隨機(jī)變量ξ2取值 、 、 、 、 的概率也均為0.2,若記Dξ1、Dξ2分別為ξ1、ξ2的方差,則( )
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1與Dξ2的大小關(guān)系與x1、x2、x3、x4的取值有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間直角坐標(biāo)系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的圖像過點(diǎn),且在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,.
(1)設(shè),若函數(shù)的圖象的一條對稱軸為直線,求的值;
(2)若將的圖象向左平移個單位,或者向右平移個單位得到的圖象都過坐標(biāo)原點(diǎn),求所有滿足條件的和的值;
(3)設(shè),,已知函數(shù)在區(qū)間上的所有零點(diǎn)依次為,且,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x3﹣3x+c的圖象與x軸恰有兩個公共點(diǎn),則c=( )
A.﹣2或2
B.﹣9或3
C.﹣1或1
D.﹣3或1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com