(本題滿分12分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),交橢圓于A、B兩個(gè)不同點(diǎn)。
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.
(1);(2);
(3)直線MA、MB與x軸始終圍成一個(gè)等腰三角形。
解析試題分析:(1)先設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)題意聯(lián)立方程組,求得a和b,橢圓的方程可得.
(2)由點(diǎn)斜式設(shè)出直線l的方程與橢圓方程聯(lián)立消去y,根據(jù)判別式大于0求得k的范圍.
(3)設(shè)A(x1,y1),B(x2,y2)由根據(jù)韋達(dá)定理,分別求得x1+x2和x1x2進(jìn)而表示出k1和k2,進(jìn)而可求得k1+k2.從而確定三角形為等腰三角形。
解:(1)設(shè)橢圓方程為
則 ∴橢圓方程為
(2)∵直線l平行于OM,且在y軸上的截距為m ; 又KOM=
由
∵直線l與橢圓交于A、B兩個(gè)不同點(diǎn),
(3)設(shè)直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可
設(shè) 則
由可得
而
故直線MA、MB與x軸始終圍成一個(gè)等腰三角形。
考點(diǎn):本試題主要考查了橢圓的應(yīng)用.考查了學(xué)生綜合分析問題和解決問題的能力.
點(diǎn)評(píng):對(duì)于解析幾何問題關(guān)鍵是要設(shè)出直線方程并能利用設(shè)而不求的思想和韋達(dá)定理得到要求解的關(guān)系式,使我們必須要用到的重要的思想方法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)曲線上任意一點(diǎn)M滿足, 其中F(-F( 拋物線的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn), 頂點(diǎn)為原點(diǎn)O.
(1)求,的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問是否存在直線滿足條件:①過的焦點(diǎn);②與交于不同
兩點(diǎn),,且滿足?若存在,求出直線的方程;若不
存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)在平面直角坐標(biāo)系中,已知點(diǎn),過點(diǎn)作拋物線的切線,其切點(diǎn)分別為(其中)。
⑴ 求的值;
⑵ 若以點(diǎn)為圓心的圓與直線相切,求圓的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知拋物線C:過點(diǎn)A
(1)求拋物線C 的方程;
(2)直線過定點(diǎn),斜率為,當(dāng)取何值時(shí),直線與拋物線C只有一個(gè)公共點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知離心率為的橢圓過點(diǎn),為坐標(biāo)原點(diǎn),平行于的直線交橢圓于不同的兩點(diǎn)。
(1)求橢圓的方程。
(2)證明:若直線的斜率分別為、,求證:+=0。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=PD.
(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:,為拋物線上一點(diǎn),為關(guān)于軸對(duì)稱的點(diǎn),為坐標(biāo)原點(diǎn).(1)若,求點(diǎn)的坐標(biāo);
(2)若過滿足(1)中的點(diǎn)作直線交拋物線于兩點(diǎn), 且斜率分別為,且,求證:直線過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B、C是橢圓上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過橢圓m的中心,且
(1)求橢圓的方程;
(2)過點(diǎn)的直線l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,
設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
標(biāo)準(zhǔn)方程下的橢圓的短軸長為,焦點(diǎn),右準(zhǔn)線與軸相交于點(diǎn),且,過點(diǎn)的直線和橢圓相交于點(diǎn).
(1)求橢圓的方程和離心率;
(2)若,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com