17.過拋物線C:y2=4x的焦點(diǎn)F,且斜率為$\sqrt{3}$的直線交C于點(diǎn)M(M在x軸上方),l為C的準(zhǔn)線,點(diǎn)N在l上,且MN⊥l,則M到直線NF的距離為(  )
A.$\sqrt{5}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

分析 利用已知條件求出M的坐標(biāo),求出N的坐標(biāo),利用點(diǎn)到直線的距離公式求解即可.

解答 解:拋物線C:y2=4x的焦點(diǎn)F(1,0),且斜率為$\sqrt{3}$的直線:y=$\sqrt{3}$(x-1),
過拋物線C:y2=4x的焦點(diǎn)F,且斜率為$\sqrt{3}$的直線交C于點(diǎn)M(M在x軸上方),l
可知:$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=\sqrt{3}(x-1)}\end{array}\right.$,解得M(3,2$\sqrt{3}$).
可得N(-1,2$\sqrt{3}$),NF的方程為:y=-$\sqrt{3}$(x-1),即$\sqrt{3}x+y-\sqrt{3}=0$,
則M到直線NF的距離為:$\frac{|3\sqrt{3}+2\sqrt{3}-\sqrt{3}|}{\sqrt{3+1}}$=2$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若M={1,2,3,6},N={2,3,4,7,9},則M∩N=( 。
A.{2,3}B.{1,4}C.{1,2,3,4,6,7,9}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知拋物線x2=y,點(diǎn)A(-$\frac{1}{2}$,$\frac{1}{4}$),B($\frac{3}{2}$,$\frac{9}{4}$),拋物線上的點(diǎn)P(x,y)(-$\frac{1}{2}$<x<$\frac{3}{2}$),過點(diǎn)B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求|PA|•|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λ+μ的最大值為( 。
A.3B.2$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C與A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(1)證明:坐標(biāo)原點(diǎn)O在圓M上;
(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a>0,b>0,a3+b3=2.證明:
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x3-2x+ex-$\frac{1}{{e}^{x}}$,其中e是自然對(duì)數(shù)的底數(shù).若f(a-1)+f(2a2)≤0.則實(shí)數(shù)a的取值范圍是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若x=-2是函數(shù)f(x)=(x2+ax-1)ex-1的極值點(diǎn),則f(x)的極小值為(  )
A.-1B.-2e-3C.5e-3D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案