【題目】在平面直角坐標(biāo)系中,已知是曲線(為參數(shù))上的動點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,直線與曲線分別相交于異于極點(diǎn)的兩點(diǎn),點(diǎn),當(dāng)時(shí),求直線的斜率.
【答案】(1)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.(2)2
【解析】
(1)先求出曲線和的直角坐標(biāo)方程,再化成極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極徑分別為,得到,,由題得,化簡即得解.
(1)由題得曲線的直角坐標(biāo)方程為,
由題知點(diǎn)的軌跡是以(2,0)為圓心,2為半徑的圓,所以曲線的方程為.
,
曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(2)在極坐標(biāo)系中,設(shè)點(diǎn)的極徑分別為,則
因?yàn)辄c(diǎn)在曲線上且,所以
在直角三角形中,則
所以,解得或,
當(dāng)時(shí),此時(shí)與O重合,故舍去,
所以直線的斜率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,與相交于點(diǎn),點(diǎn)在線段上,.
(1)求證:平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn)M(﹣2,﹣1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:
(Ⅰ)(1)設(shè)所采集的40個連續(xù)正常運(yùn)行時(shí)間的中位數(shù),并將連續(xù)正常運(yùn)行時(shí)間超過和不超過的次數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
改造前 | ||
改造后 |
試寫出,,,的值;
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?
附:,
0.050> | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù).工廠對生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對生產(chǎn)線設(shè)定維護(hù)周期為天(即從開工運(yùn)行到第天()進(jìn)行維護(hù).生產(chǎn)線在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護(hù)周期,每個維護(hù)周期相互獨(dú)立.在一個維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測算,正常維護(hù)費(fèi)為0.5萬元次;保障維護(hù)費(fèi)第一次為0.2萬元周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,,2,3,4.以生產(chǎn)線在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別是橢圓的左,右焦點(diǎn),兩點(diǎn)分別是橢圓的上,下頂點(diǎn),是等腰直角三角形,延長交橢圓于點(diǎn),且的周長為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上異于的動點(diǎn),直線與直分別相交于兩點(diǎn),點(diǎn),求證:的外接圓恒過原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校甲、乙、丙、丁四個專業(yè)分別有150,150,400,300名學(xué)生.為了解學(xué)生的就業(yè)傾向,用分層抽樣的方法從該校這四個專業(yè)中抽取60名學(xué)生進(jìn)行調(diào)查,則應(yīng)從丁專業(yè)抽取的學(xué)生人數(shù)為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四個同樣大小的球,,,兩兩相切,點(diǎn)是球上的動點(diǎn),則直線與直線所成角的正弦值的取值范圍為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是九江市2019年4月至2020年3月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計(jì)圖:已知每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r=0.83,則下列結(jié)論錯誤的是( )
A.每月最低氣溫與最高氣溫有較強(qiáng)的線性相關(guān)性,且二者為線性正相關(guān)
B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10月
C.9﹣12月的月溫差相對于5﹣8月,波動性更大
D.每月最高氣溫與最低氣溫的平均值在前6個月逐月增加
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com