11.已知曲線C1:$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù))與曲線C2:ρ=4sinθ
(1)寫出曲線C1的普通方程和曲線C2的直角坐標方程;
(2)求曲線C1和C2公共弦的長度.

分析 (1)利用sin2θ+cos2θ=1消參數(shù)得到C1的普通方程,對ρ=4sinθ兩邊同乘以ρ即可得到曲線C2的普通方程;
(2)曲線C1和C2公共弦所在額直線為2x-4y+3=0,求出圓心距,即可求出公共弦長.

解答 解:(1)曲線C1的普通方程圍為(x-1)2+y2=4,
曲線C2的直角坐標方程x2+y2-4y=0,
(2)曲線C1和C2公共弦所在額直線為2x-4y+3=0,
且點C1(1,0)到直線2x-4y+3=0的距離為$\frac{2+3}{\sqrt{{2}^{2}+{4}^{2}}}$=$\frac{\sqrt{5}}{2}$,
所以公共弦的長度為2$\sqrt{4-\frac{5}{4}}$=$\sqrt{11}$.

點評 本題考查了參數(shù)方程,極坐標方程與普通方程的互化,圓與圓的位置關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,
①A<B?sinA<sinB;
②若a,b,c為△ABC的三邊且a=$\sqrt{3}$,B=2A,則b的取值范圍是($\sqrt{3},2\sqrt{3}$);
③若O為△ABC所在平面內(nèi)異于A、B、C的一定點,動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(${\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|sinB}}+\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|sinC}}}$)(λ∈R),則動點P必過△ABC的內(nèi)心;
④△ABC的三邊構成首項為正整數(shù),公差為1的等差數(shù)列,且最大角是最小角的兩倍,則最小角的余弦值為$\frac{3}{4}$.
其中所有正確結論的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設集合U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},則圖中陰影部分所表示的集合為( 。
A.{3}B.{2,4}C.{2,3,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,正方形BCDE的邊長為a,已知AB=$\sqrt{3}$BC,將直角△ABE沿BE邊折起,A點在平面BCDE上的射影為D點,則對翻折后的幾何體中有如下描述:
①AB與DE所成角的正切值是$\sqrt{2}$;
②三棱錐B-ACE的體積是$\frac{1}{6}$a3
③直線BA與平面ADE所成角的正弦值為$\frac{1}{3}$.
④平面EAB⊥平面ADE.
其中錯誤敘述的是③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.3B.1C.6D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=3+x+2$\sqrt{x+1}$的最小值是( 。
A.4+2$\sqrt{2}$B.1C.5D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若cos100°=m,則tan80°=-$\frac{\sqrt{1-{m}^{2}}}{m}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知橢圓的中心點在原點,離心率e=$\frac{1}{2}$,且它的一個焦點與拋物線y2=-4x的焦點重合,則此橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=sinx+$\frac{2}{sinx}$,試判斷f(x)在(0,π)內(nèi)的增減性,且證明你的結論.

查看答案和解析>>

同步練習冊答案