已知函數(shù)y=f(x)(x∈(0,2))的圖象是如圖所示的圓C的一段圓。F(xiàn)給出如下命題:

;②;③為減函數(shù);④若,則a+b=2.

其中所有正確命題的序號(hào)為    

 

【答案】

①③④

【解析】

試題分析:因?yàn),x=1時(shí),是極值點(diǎn),所以,①正確;

因?yàn)楹瘮?shù)的圖象先上升后下降,即函數(shù)由增變?yōu)闇p,所以,②不正確;

由圖象可知,所以,③為減函數(shù)正確;

,即,整理得,,所以,a+b=2。

綜上知,答案為①③④。

考點(diǎn):函數(shù)的圖象,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。

點(diǎn)評(píng):中檔題,在指定區(qū)間,導(dǎo)函數(shù)值非負(fù),函數(shù)為增函數(shù),導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x+
1
2
)
為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=( 。
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說(shuō)明為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時(shí)的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實(shí)數(shù)a的取值范圍,使命題p,q中有且只有一個(gè)為真命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案