2.已知集合A={x|(x-2)(x-3a-2)<0},B={x|(x-1)(x-a2-2)<0},若a>0,試問(wèn):
(1)當(dāng)a=1時(shí),求A∩B;
(2)命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實(shí)數(shù)a的取值范圍.

分析 (1)將a=1帶入A,B,解出關(guān)于A、B的不等式,取交集即可;
(2)分別求出關(guān)于A、B的不等式,根據(jù)x∈B是x∈A的必要條件,得到關(guān)于a的不等式,解出即可.

解答 解:(1)a=1時(shí):A={x|(x-2)(x-5)<0},B={x|(x-1)(x-3)<0},
∴A={x|2<x<5},B={x|1<x<3},
因此,A∩B={x|2<x<3};
(2)由題知:B=(x|1<x<a2+2)
因?yàn)閍>0,即3a+2>2,所以,A={x|2<x<3a+2}
由于命題q:x∈B是命題p:x∈A的必要條件
∴3a+2≤a2+2,又∵a>0
∴a≥3,即a∈[3,+∞).

點(diǎn)評(píng) 本題考查了解不等式問(wèn)題,考查集合的運(yùn)算以及充分必要條件,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果函數(shù)f(x)=3sin(2x+φ)的圖象關(guān)于點(diǎn)($\frac{π}{3}$,0)成中心對(duì)稱(chēng)(|φ|<$\frac{π}{2}$),那么函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸是( 。
A.x=-$\frac{π}{6}$B.x=$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)x,y,z為正實(shí)數(shù),且x+y+z=3.求證:$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}≥\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)m=10,n=20,則可以實(shí)現(xiàn)m、n的值互換的程序是( 。
A.m=10  n=20   n=m  m=n
B.m=10  n=20   s=m   n=s
C.m=10  n=20   s=m   m=n  n=s
D.m=10  n=20   s=m   t=n   n=s    m=n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)集合A={x|x2-3x<0},B={x|-2≤x≤2},則A∩B=(  )
A.{x|2≤x<3}B.{x|-2≤x<0}C.{x|0<x≤2}D.{x|-2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.記Sn為數(shù)列{an}的前項(xiàng)n和,已知an>0,${a_n}^2-2{S_n}=2-{a_n}$(n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)設(shè)${b_n}=\frac{3}{{{a_{2n}}{a_{2n+2}}}}$,求數(shù)列{bn}的前項(xiàng)n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知log2(2-x)≤log2(3x+6)
(1)解上述不等式;
(2)在(1)的條件下,求函數(shù)$y={({\frac{1}{4}})^{x-1}}-4•{({\frac{1}{2}})^x}$+2的最大值和最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在ABCD中,角A,B,C所對(duì)的邊分別為a,b,c,且$\overrightarrow{m}$=(sinA,sinB-sinC),$\overrightarrow{n}$=(a-$\sqrt{3}$b,b+c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的值;
(2)若△ABC外接圓半徑為2,面積為$\sqrt{3}$且a>b,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)$y={(\frac{1}{3})^{\sqrt{2x-{x^2}}}}$的單調(diào)遞增區(qū)間為( 。
A.(1,+∞)B.(-∞,1)C.[1,2]D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案