精英家教網 > 高中數學 > 題目詳情
函數y=tan(2x+
π
6
)的周期是( 。
分析:根據函數y=tan(2x+
π
6
)的周期為 T=
π
ω
,運算求得結果.
解答:解:函數y=tan(2x+
π
6
)的周期為 T=
π
ω
=
π
2
,
故選C.
點評:本題主要考查正切函數的周期性和求法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列四個命題:
①函數y=tanx在定義域內是增函數;
②函數y=tan(
π
4
-2x)
的最小正周期是π;
③函數y=tan(2x-
π
3
)
的圖象關于點(-
3
,0)
成中心對稱;
④函數y=tan(2x-
π
3
)
(-
π
12
,
12
)
上單調遞增
其中正確的命題個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=tan(2x+φ)的最小正周期是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線x=
2
(-1≤k≤1)與函數y=tan(2x+
π
4
)的圖象不相交,則k=(  )
A、
1
4
B、-
3
4
C、
1
4
或-
3
4
D、-
1
4
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

關于函數y=tan(2x-
π
3
),下列說法正確的是( 。
A、是奇函數
B、最小正周期為π
C、(
π
6
,0)為圖象的一個對稱中心
D、其圖象由y=tan2x的圖象右移
π
3
單位得到

查看答案和解析>>

同步練習冊答案