8.命題“?x∈R,都有|sinx|<1”的否定是( 。
A.?x∈R,都有|sinx|>1B.?x∈R,都有|sinx|≥1C.?x∈R,使|sinx|>1D.?x∈R,使|sinx|≥1

分析 直接利用全稱命題的否定是特稱命題寫出結果即可.

解答 解:因為全稱命題的否定是特稱命題,所以命題:?x∈R,|sinx|<1的否定是:?x∈R,|sinx|≥1.
故選:D

點評 本題考查沒有的否定全稱命題與特稱命題的否定關系,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,A=$\frac{π}{6},BC=\frac{{4\sqrt{3}}}{3}$,AB=4,則C=( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.通過研究學生的學習行為,心理學家發(fā)現(xiàn),學生的接受能力依賴于老師引入概念和描述問題所用的時間:講授開始時,學生的興趣激增;中間有一段不太長的時間,學生的興趣保持較理想的狀態(tài);隨后學生的注意力開始分散.分析結果和實驗表明,用f(x)表示學生掌握和接受概念的能力(f(x)的值越大,表示學生的接受能力越強),x表示提出和講授概念的時間(單位:min),可有以下公式:f(x)=$\left\{\begin{array}{l}{-0.1{x}^{2}+2.6x+43(0<x≤10)}\\{59(10<x≤16)}\\{-3x+107(16<x≤30)}\end{array}\right.$
(1)講課開始后5min和講課開始后20min比較,何時學生的注意力更集中?
(2)講課開始后多少分鐘,學生的注意力最集中,能持續(xù)多久?
(3)一道數(shù)學難題,需要講解13min,并且要求學生的注意力至少達到55,那么老師能否在學生達到所需狀態(tài)下講授完這道題目?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若函數(shù)f(x)滿足$f(x)=1+f(\frac{1}{2}){log_2}x$,則f(4)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設△ABC的三個內(nèi)角A、B、C的對邊分別為a、b、c,且asinAsinB+bcos2A=$\sqrt{2}$a,則角A的取值范圍為(0,$\frac{π}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某年級有900名學生,隨機編號為001,002,…,900,現(xiàn)用系統(tǒng)抽樣方法,從中抽出150人,若015號被抽到了,則下列編號也被抽到的是(  )
A.036B.081C.136D.738

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足b2+c2-a2=bc,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,a=$\frac{\sqrt{3}}{2}$,則b+c的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$)C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{1}{2}$,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知拋物線C的方程x2=2px,M(2,1)為拋物線C上一點,F(xiàn)為拋物線的焦點.
( I)求|MF|;
( II)設直線l2:y=kx+m與拋物線C有唯一公共點P,且與直線l1:y=-1相交于點Q,試問,在坐標平面內(nèi)是否存在點N,使得以PQ為直徑的圓恒過點N?若存在,求出點N的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,a,b,c分別是角A,B,C的對邊,且關于x的不等式x2-(a2+bc)x+m<0(m∈R)解集為(b2,c2).
(1)求角A的大;
(2)若a=$\sqrt{6}$,設B=θ,△ABC的周長為y,求y=f(θ)的取值范圍.

查看答案和解析>>

同步練習冊答案