14.若拋物線x2=ay的焦點(diǎn)為F(0,2),則a的值為( 。
A.$\frac{1}{4}$B.4C.$\frac{1}{8}$D.8

分析 由拋物線x2=ay的焦點(diǎn)坐標(biāo)為(0,2),可得$\frac{a}{4}$=2,解出即可.

解答 解:∵拋物線x2=ay的焦點(diǎn)坐標(biāo)為(0,2),可知拋物線開口向上,
∴$\frac{a}{4}$=2,
解得a=8.
故選:D.

點(diǎn)評(píng) 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì),考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.雙曲線x2-2y2=3的漸近線方程是y=$±\frac{\sqrt{2}}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若命題p:常數(shù)列是等差數(shù)列,則¬p:存在一個(gè)常數(shù)列,它不是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$A=\left\{{x|{{log}_{\frac{1}{2}}}x≥2}\right\}$,$B=\left\{{x|{3^{-{x^2}+x+6}}≥1}\right\}$,求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.交警隨機(jī)抽取了途經(jīng)某服務(wù)站的40輛小型轎車在經(jīng)過某區(qū)間路段的車速(單位:km/h),現(xiàn)將其分成六組為[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如圖所示的頻率分布直方圖.
(Ⅰ)某小型轎車途經(jīng)該路段,其速度在70km/h以上的概率是多少?
(Ⅱ)若對(duì)車速在[60,65),[65,70)兩組內(nèi)進(jìn)一步抽測(cè)兩輛小型轎車,求至少有一輛小型轎車速度在[60,65)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,
(Ⅰ)求證:直線AM∥平面PNC;
(Ⅱ)在AB上是否存在一點(diǎn)E,使CD⊥平面PDE,若存在,確定E的位置,并證明,若不存在,說明理由;
(Ⅲ)求三棱錐C-PDA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=|2x-1|-m有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$f(x)=cos({ωx+\frac{π}{3}})$,且ω是函數(shù)y=ex-e2x的極值點(diǎn),則f(x)的一條對(duì)稱軸是(  )
A.$x=-\frac{π}{3}$B.$x=\frac{π}{3}$C.$x=\frac{π}{6}$D.$x=\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.美團(tuán)外賣和百度外賣兩家公司其“騎手”的日工資方案如下:美團(tuán)外賣規(guī)定底薪70元,每單抽成1元;百度外賣規(guī)定底薪100元,每日前45單無抽成,超出45單的部分每單抽成6元,假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司個(gè)隨機(jī)抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:

(Ⅰ)求百度外賣公司的“騎手”一日工資y(單位:元)與送餐單數(shù)n的函數(shù)關(guān)系;
(Ⅱ)若將頻率視為概率,回答下列問題:
①記百度外賣的“騎手”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
②小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案