已知函數(shù)f(x)=
ax+1x+2
(a為常數(shù))
(1)若a=0,試判斷f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
分析:(1)把a(bǔ)=0代入函數(shù)解析式,化簡解析式到最簡形式后,進(jìn)行分析.即可.
(2)若f(x)在[0,+∞)上單調(diào)遞增,任取0≤x1<x2<+∞,則f(x1)-f(x2)=
(1-2a)(x2-x1)
(x1+2)(x2+2)
<0
 恒成立.
解答:解:(1)當(dāng)a=0時(shí),f(x)=
1
x+2
,f(x)在(-∞,-2)和(-2,+∞)上均為單調(diào)遞減
(2)任取0≤x1<x2<+∞,則f(x1)-f(x2)=
(1-2a)(x2-x1)
(x1+2)(x2+2)
<0
恒成立,
0≤x1x2
x2-x1
(x1+2)(x2+2)
>0?1-2a<0?a>
1
2
,
實(shí)數(shù)a的取值范圍是 (
1
2
,+∞)
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性及單調(diào)區(qū)間,以及利用函數(shù)的單調(diào)性求參數(shù)的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案