若橢圓的兩個焦點與它的短軸的兩個端點是一個正方形的四個頂點,則橢圓的離心率為         .    
.

試題分析:因為橢圓的兩個焦點與它的短軸的兩個端點是一個正方形的四個頂點,所以借助于橢圓的對稱性,橢圓的離心率=cos45°=。

點評:簡單題,注意到橢圓的離心率即
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線方程為x-2y=1.則它的右焦點坐標(biāo)是(  )
A.(,0)B.(,0)C.(,0)D.(,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓:和圓,過橢圓上一點引圓的兩
條切線,切點分別為. 若橢圓上存在點,使得,則橢圓離心率的取值范圍
是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點,若cam的等比中項,n2是2m2c2的等差中項,則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

ABC的兩個頂點坐標(biāo)分別是B(0,6)和C(0,-6),另兩邊AB、AC的斜率的乘積是-,求頂點A的軌跡方程.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,軸截面為邊長為等邊三角形的圓錐,過底面圓周上任一點作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為(  )
A.  B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點是F拋物線與橢圓的公共焦點,且橢圓的離心率為

(1)求橢圓的方程;
(2)過拋物線上一點P,作拋物線的切線,切點P在第一象限,如圖,設(shè)切線與橢圓相交于不同的兩點A、B,記直線OP,F(xiàn)A,FB的斜率分別為(其中為坐標(biāo)原點),若,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于兩點,使得.
(1)求橢圓的方程;(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準(zhǔn)線上,則雙曲線的方程為         

查看答案和解析>>

同步練習(xí)冊答案