函數(shù)y=log
1
2
x+1
x-1
(x≥3)的值域是( 。
A、(0,1]
B、[-1,0)
C、[-1,+∞)
D、(-∞,-1]
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)符合函數(shù)的單調(diào)性得到函數(shù)為增函數(shù),問題得以解決.
解答: 解:設(shè)g(x)=
x+1
x-1
=1+
2
x-1
,x≥3,
因為函數(shù)g(x)為減函數(shù),g(x)max=g(3)=2,
所以g(x)=1+
2
x-1
>1,
又因為y=log
1
2
x為減函數(shù),
所以y=log
1
2
g(x)為增函數(shù),
所以ymin=log
1
2
2=-1,ymax=0,
故函數(shù)的值域為[-1,0)
故選:C.
點評:本題主要考查了復(fù)合函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個條件:
①A1∪A2∪…∪Am=A;
②對任意的{x,y}⊆A,至少存在一個i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為aki=
1(k∈Ai)
0(k∉Ai)

 a11 a12 … a1m
 a21 a22 … a2m
????
 an1 an2 … anm
(Ⅰ)當n=4時,判斷下列兩個集合組是否具有性質(zhì)P,如果是請畫出所對應(yīng)的表格,如果不是請說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)當n=7時,若集合組A1,A2,A3具有性質(zhì)P,請先畫出所對應(yīng)的7行3列的一個數(shù)表,再依此表格分別寫出集合A1,A2,A3;
(Ⅲ)當n=100時,集合組A1,A2,…,At是具有性質(zhì)P且所含集合個數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈R,求
x
x2+4
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足3an+1+an=4(n≥1),且a1=9,其前n項和為Sn,則滿足不等式|Sn-n-6|<
1
90
的最小正整數(shù)n是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若三條直線l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4不能圍成三角形,則實數(shù)m的取值最多有(  )
A、2個B、3個C、4個D、5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a1=1,a1,a2,a5成等比數(shù)列.
(1)求{an}的通項公式;
(2)若{an}為遞增數(shù)列,設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,若a5=-
3
,則a2•a8=( 。
A、-3B、3C、-9D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知b-c=
1
2
a,2sinB=3sinC,則cosA的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合M={y|y=x2-1,x∈R},集合N={x|y=
3-x2
},則M∩N=(  )
A、{y|-
2
<y<-1或
2
<y<1}
B、{y|0≤y≤
3
}
C、{x|-1≤x≤
3
}
D、∅

查看答案和解析>>

同步練習冊答案