5.sin300°+tan600°的值是  ( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$+$\sqrt{3}$D.$\frac{1}{2}$+$\sqrt{3}$

分析 原式中的角度變形后,利用誘導(dǎo)公式化簡(jiǎn)即可得到結(jié)果.

解答 解:sin300°+tan600°=sin(360°-60°)+tan(360°+180°+60°)=-sin60°+tan60°=-$\frac{\sqrt{3}}{2}$+$\sqrt{3}$=$\frac{\sqrt{3}}{2}$.
故選:B.

點(diǎn)評(píng) 此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1,AB⊥AN,CB=BA=AN=$\frac{1}{2}$BB1
(1)求證:BN⊥平面C1B1N;
(2)求二面角C-C1N-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱,且圖象上相鄰最高點(diǎn)的距離為π.
(1)求f(x)的解析式;
(2)將y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到g(x)的圖象若關(guān)于x的方程g(x)-(2m+1)=0在$[0,\frac{π}{2}]$上有唯一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=x3+ax2+bx,(a,b∈R)的圖象如圖所示,它與直線y=0在原點(diǎn)處相切,此切線與函數(shù)圖象所圍區(qū)域(圖中陰影部分)的面積為3,則a的值為$-\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z滿足z=i(1-i)(其中i為虛數(shù)單位),則z的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知關(guān)于θ的方程$\sqrt{3}sinθ+cosθ+a=0$在區(qū)間(0,2π)上有兩個(gè)不相等的實(shí)數(shù)根α、β,則sin(α+β)=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.圓x2+y2-4x=0在點(diǎn)P(4,1)處的切線方程為3x+4y-16=0或x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義A-B={x|x∈A且x∉B}.已知A={1,2},B={1,3,4},則A-B=( 。
A.{1}B.{2}C.{3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的菱形,$∠ABC=\frac{π}{3}$,且PA⊥平面ABCD.
(Ⅰ)證明:平面PAC⊥平面PBD;
(Ⅱ)若平面PAB與平面PCD的夾角為$\frac{π}{3}$,試求線段PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案