12.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=3,|${\overrightarrow b}$|=2,|${\overrightarrow a$-2$\overrightarrow b}$|≤4,則$\overrightarrow b$在$\overrightarrow a$上的投影長度取值范圍是( 。
A.[$\frac{9}{8}$,2]B.[$\frac{3}{4}$,+∞)C.[$\frac{3}{4}$,2]D.(0,$\frac{3}{4}$]

分析 求$\overrightarrow b$,$\overrightarrow a$的夾角的范圍,代入投影公式計(jì)算最值.

解答 解:∵|${\overrightarrow a$-2$\overrightarrow b}$|≤4,
∴|${\overrightarrow a$|2-4${\overrightarrow a$•$\overrightarrow b}$+4|$\overrightarrow b}$|2≤16,
∴9-4${\overrightarrow a$•$\overrightarrow b}$+16≤16,
∴${\overrightarrow a$•$\overrightarrow b}$≥$\frac{9}{4}$,
設(shè)$\overrightarrow b$,$\overrightarrow a$的夾角為θ,
則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$≥$\frac{3}{8}$,
又∵cosθ≤1,
∴$\frac{3}{8}$≤cosθ≤1,
∴$\frac{3}{4}$≤|$\overrightarrow$|cosθ≤2,
故選:C

點(diǎn)評(píng) 本題考查了平面向量數(shù)量積的運(yùn)算與應(yīng)用,求出向量夾角是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列表達(dá)式中,錯(cuò)誤的是(  )
A.sin(α+β)=sinαcosβ+cosαsinβB.sin(α-β)=cosβsinα-sinβcosα
C.cos(α-β)=cosαcosβ-sinαsinβD.cos(α+β)=cosαcosβ-sinαsinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市教育局委托調(diào)查機(jī)構(gòu)對(duì)本市中小學(xué)學(xué)校使用“微課掌上通”滿意度情況進(jìn)行調(diào)查.隨機(jī)選擇小學(xué)和中學(xué)各50所學(xué)校進(jìn)行調(diào)查,調(diào)查情況如表:
評(píng)分等級(jí)☆☆☆☆☆☆☆☆☆☆☆☆☆☆
小學(xué)2792012
中學(xué)3918128
(備注:“☆”表示評(píng)分等級(jí)的星級(jí),例如“☆☆☆”表示3星級(jí).)
(1)從評(píng)分等級(jí)為5星級(jí)的學(xué)校中隨機(jī)選取兩所學(xué)校,求恰有一所學(xué)校是中學(xué)的概率;
(2)規(guī)定:評(píng)分等級(jí)在4星級(jí)以上(含4星)為滿意,其它星級(jí)為不滿意.完成下列2×2列聯(lián)表并幫助判斷:能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為使用是否滿意與學(xué)校類別有關(guān)系?
學(xué)校類型滿意不滿意總計(jì)
小學(xué)50
中學(xué)50
總計(jì)100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)離散型隨機(jī)變量ξ的概率分布如表:
ξ0123
P$\frac{1}{5}$$\frac{1}{5}$$\frac{1}{10}$p
則p的值為( 。
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在復(fù)平面內(nèi)表示復(fù)數(shù):i102+$\frac{1+i}{1-i}$的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=x($\frac{1}{2}$)x+$\frac{1}{x+2}$,O為坐標(biāo)原點(diǎn),An為函數(shù)y=f(x)圖象上橫坐標(biāo)為n(n∈N*)的點(diǎn),向量$\overrightarrow{O{A_n}}$與向量$\overrightarrow i$=(1,0)的夾角為αn,則滿足tanα1+tanα2+…+tanαn<$\frac{5}{4}$的最大整數(shù)n的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示的七面體是由三棱臺(tái)ABC-A1B1C1和四棱錐D-AA1C1C對(duì)接而成,四邊形ABCD是邊長為2的正方形,BB1⊥平面⊥ABCD,BB1=2A1B1=2.
(1)求證:平面AA1C1C⊥平面BB1D;
(2)求二面角A一A1D一C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.參數(shù)方程$\left\{\begin{array}{l}{x=|cos\frac{θ}{2}+sin\frac{θ}{2}|}\\{y=\frac{1}{2}(1+sinθ)}\end{array}\right.$(θ為參數(shù),0≤θ<2π)表示(  )
A.雙曲線的一支,這支過點(diǎn)(1,$\frac{1}{2}$)B.拋物線的一部分,這部分過點(diǎn)(1,$\frac{1}{2}$)
C.雙曲線的一支,這支過點(diǎn)(-1,$\frac{1}{2}$)D.拋物線的一部分,這部分過點(diǎn)(-1,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,其中a1=1,且$\frac{{S}_{n}}{{a}_{n}}$=λan+1(n∈N*).記bn=$\frac{{a}_{n}}{{3}^{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若對(duì)任意的n≥k(k∈N*),都有|Tn-$\frac{3}{4}$|<$\frac{1}{4n}$,則常數(shù)k的最小值為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案