已知曲線,求曲線過點的切線方程。
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在x軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線不過點M,求證:直線MA、MB與x軸圍成一個等腰三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)設直線經(jīng)過點(0,1),且與橢圓C交于兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,過點P(4,0)且不垂直于x軸直線與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,點B與點A(-1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(1)求動點P的軌跡方程;
(2)設直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知拋物線:和⊙:,過拋物線上一點作兩條直線與⊙相切于、兩點,分別交拋物線為E、F兩點,圓心點到拋物線準線的距離為.
(1)求拋物線的方程;
(2)當的角平分線垂直軸時,求直線的斜率;
(3)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的橫坐標為,求斜率的值;②若點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖示:已知拋物線的焦點為,過點作直線交拋物線于、兩點,經(jīng)過、兩點分別作拋物線的切線、,切線與相交于點.
(1)當點在第二象限,且到準線距離為時,求;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的一個頂點為,焦點在軸上,若右焦點到直線的距離為3.
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點、,當時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com