15.不等式$\frac{3-x}{x+1}$<0的解集是(-∞,-1)∪(3,+∞).

分析 將分式不等式等價轉(zhuǎn)化后,由一元二次不等式的解法求出解集即可.

解答 解:不等式$\frac{3-x}{x+1}<0$等價于(x+1)(3-x)<0,
即(x+1)(x-3)>0,解得x<-1或x>3,
所以不等式的解集是(-∞,-1)∪(3,+∞),
故答案為:(-∞,-1)∪(3,+∞).

點評 本題考查簡單的分式不等式的解法,以及一元二次不等式的解法,考查轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.對于數(shù)列{an},定義Hn=$\frac{{a}_{1}+2{a}_{2}+…+{2}^{n-1}{a}_{n}}{n}$為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值”Hn=2n+1,記數(shù)列{an-kn}的前n項和為Sn,若Sn≤S6對任意的n恒成立,則實數(shù)k的取值范圍是$[\frac{16}{7},\frac{7}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個物體的運動方程為s=t2-t+2(其中s的單位是米,t的單位是秒),那么物體在t=4秒的瞬時速度是(  )
A.6米/秒B.7米/秒C.8米/秒D.9米/秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知sin(30°+α)=$\frac{3}{5}$,60°<α<150°,則cosα的值是(  )
A.$\frac{3\sqrt{3}-4}{10}$B.$\frac{4}{5}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線$\frac{{x}^{2}}{4}$-y2=1的離心率為( 。
A.$\frac{1}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若經(jīng)過A(a,-1),B(2,3)的直線的斜率為2,則a等于( 。
A.0B.-1C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC.
(1)求證:A1C⊥平面BED;
(2)求三棱錐A1-BED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在1,2,3,4共4個數(shù)字中,任取兩個數(shù)字(允許重復(fù)),其中一個數(shù)字是另一個數(shù)字的2倍的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知${(x+\frac{2}{{\sqrt{x}}})^n}$的展開式前兩項二項式系數(shù)的和為9.
(1)求n的值.
(2)這個展開式中是否有常數(shù)項?若有,將它求出,若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案