【題目】已知向量,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)滿足:.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)已知直線都過點(diǎn),且,與軌跡分別交于點(diǎn),試探究是否存在這樣的直線?使得是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請(qǐng)說明理由.
【答案】設(shè)點(diǎn),則…… 1分
∵
∴……… ……… ……… 2分
∴點(diǎn)M的軌跡C是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為 4 的橢圓……… …… ……… 4分
∴∴
∴ 動(dòng)點(diǎn)M的軌跡C的方程為……… ……… ……… 6分
(2)由(1)知,軌跡C是橢圓,點(diǎn)是它的上頂點(diǎn),
設(shè)滿足條件的直線、存在,直線的方程為①
則直線的方程為,② ……… ……… ……… 7分
將①代入橢圓方程并整理得:,可得,則.
將②代入橢圓方程并整理得:,可得,則.
由△BDE是等腰直角三角形得
…………11分
∴或④…………………………………………12分
∵方程④或.
∴即滿足條件的直線、存在,共有3組.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點(diǎn)處的切線為直線.
(Ⅰ)求直線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)為橢圓上一點(diǎn),求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市將建一個(gè)制藥廠,但該廠投產(chǎn)后預(yù)計(jì)每天要排放大約80噸工業(yè)廢氣,這將造成極大的環(huán)境污染.為了保護(hù)環(huán)境,市政府決定支持該廠貸款引進(jìn)廢氣處理設(shè)備來減少?gòu)U氣的排放,該設(shè)備可以將廢氣轉(zhuǎn)化為某種化工產(chǎn)品和符合排放要求的氣體,經(jīng)測(cè)算,制藥廠每天利用設(shè)備處理廢氣的綜合成本(元)與廢氣處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理噸工業(yè)廢氣可得價(jià)值為元的某種化工產(chǎn)品并將之利潤(rùn)全部用來補(bǔ)貼廢氣處理.
(1)若該制藥廠每天廢氣處理量計(jì)劃定位20噸時(shí),那么工廠需要每天投入的廢氣處理資金為多少元?
(2)若該制藥廠每天廢氣處理量計(jì)劃定為噸,且工廠不用投入廢氣處理資金就能完成計(jì)劃的處理量,求的取值范圍;
(3)若該制藥廠每天廢氣處理量計(jì)劃定為()噸,且市政府決定為處理每噸廢氣至少補(bǔ)貼制藥廠元以確保該廠完成計(jì)劃的處理量總是不用投入廢氣處理資金,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)市場(chǎng)分析,南雄市精細(xì)化工園某公司生產(chǎn)一種化工產(chǎn)品,當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本y(萬元)可以看成月產(chǎn)量x(噸)的二次函數(shù);當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬元,為二次函數(shù)的頂點(diǎn).寫出月總成本y(萬元)關(guān)于月產(chǎn)量x(噸)的函數(shù)關(guān)系.已知該產(chǎn)品銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值;
(3)若方程,有兩個(gè)不相等的實(shí)數(shù)根,比較與0的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
周銷售量(單位:噸) | 2 | 3 | 4 |
頻數(shù) | 20 | 50 | 30 |
⑴ 根據(jù)上面統(tǒng)計(jì)結(jié)果,求周銷售量分別為2噸,3噸和4噸的頻率;
⑵ 已知每噸該商品的銷售利潤(rùn)為2千元,表示該種商品兩周銷售利潤(rùn)的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨(dú)立,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若函數(shù)存在極值,對(duì)于任意的,存在正實(shí)數(shù),使得,試判斷與的大小關(guān)系并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一份測(cè)試題包括6道選擇題,每題只有一個(gè)選項(xiàng)是正確的.如果一個(gè)學(xué)生對(duì)每一道題都隨機(jī)猜一個(gè)答案,用隨機(jī)模擬方法估計(jì)該學(xué)生至少答對(duì)3道題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,第(1)問 6 分,第(2)問 6 分)
某品牌新款夏裝即將上市,為了對(duì)夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店 | A店 | B店 | C店 | |||
售價(jià)(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷售量(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)以三家連鎖店分別的平均售價(jià)和平均銷量為散點(diǎn),求出售價(jià)與銷量的回歸直線方程;
(2)在大量投入市場(chǎng)后,銷售量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40元/件,為使該款夏裝在銷售上獲得最大利潤(rùn),該款夏裝的單價(jià)應(yīng)定為多少元(保留整數(shù))?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com