11.程序框圖如圖所示,若輸入值t∈(1,3),則輸出值S的取值范圍是( 。
A.(3,4]B.(3,4)C.[1,9]D.(1,9)

分析 模擬執(zhí)行程序框圖,可得程序框圖的功能是計算并輸出S=$\left\{\begin{array}{l}{3t}&{t<1}\\{4t-{t}^{2}}&{t≥1}\end{array}\right.$的值,由t的范圍,利用二次函數(shù)的圖象和性質(zhì)即可得解.

解答 解:由程序框圖可知程序框圖的功能是計算并輸出S=$\left\{\begin{array}{l}{3t}&{t<1}\\{4t-{t}^{2}}&{t≥1}\end{array}\right.$的值,
可得:當(dāng)t∈(1,3)時,S=4t-t2=4-(t-2)2∈(3,4].
故選:A.

點評 本題主要考查了程序框圖和二次函數(shù)的性質(zhì),屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|x2≤7},Z為整數(shù)集,則集合A∩Z中元素的個數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的兩條漸進線為l1、l2,且l1與x軸所成的夾角為30°,且雙曲線的焦距為$4\sqrt{2}$.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l,l與橢圓C相交于A、B,與圓O:x2+y2=a2相交于D、E兩點,當(dāng)△OAB的面積最大時,求弦DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若f(x)=ax3+4x+5的圖象在(1,f(1))處的切線在x軸上的截距為-$\frac{3}{7}$.則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.袋中裝有大小完全相同,標(biāo)號分別為1,2,3,…,9的九個球,現(xiàn)從袋中隨機取出3個球,設(shè)ξ為這3個球的標(biāo)號相鄰的組數(shù)(例如:若取出球的標(biāo)號為3,4,5,則有兩組相鄰的標(biāo)號3,4和4,5,此時ξ的值是2),則隨機變量ξ的均值E(ξ)為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線l:y=k(x+1)+$\sqrt{3}$與圓x2+y2=4交于A、B兩點,過A、B分別做l的垂線與x軸交于C、D兩點,若|AB|=4,則|CD|=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,b=3,c=3,B=30°,則a的值為( 。
A.3B.23C.3$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的左右焦點分別為F1,F(xiàn)2,過F1的直線與左支相交于A,B兩點,如果|AF2|+|BF2|=2|AB|,則|AB|=$4\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知函數(shù)f(x)=2x+$\frac{1}{x}$(x>0),證明函數(shù)f(x)在(0,$\frac{\sqrt{2}}{2}$)上單調(diào)遞減,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)記函數(shù)g(x)=a|x|+2ax(a>1)
①若a=4,解關(guān)于x的方程g(x)=3;
②若x∈[-1,+∞),求函數(shù)g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案